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Fig. 1. With torus-shaped obstacles in the fluid domain, the cohomology of the fluid velocity becomes nontrivial. By incorporating the correct time-evolution of
the harmonic parts, our method (middle) removes the unphysical behaviors of a general vorticity-streamfunction method (left). We compare our result against
ground truth which is produced by a velocity-based method using pressure projection (right).
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The vorticity-streamfunction formulation for incompressible inviscid fluids is

the basis for many fluid simulation methods in computer graphics, including

vortex methods, streamfunction solvers, spectral methods, and Monte Carlo

methods. We point out that current setups in the vorticity-streamfunction

formulation are insufficient at simulating fluids on general non-simply-

connected domains. This issue is critical in practice, as obstacles, periodic

boundaries, and nonzero genus can all make the fluid domain multiply

connected. These scenarios introduce nontrivial cohomology components to

the flow in the form of harmonic fields. The dynamics of these harmonic

fields have been previously overlooked. In this paper, we derive the missing

equations of motion for the fluid cohomology components. We elucidate the

physical laws associated with the new equations, and show their importance

in reproducing physically correct behaviors of fluid flows on domains with

general topology.
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1 INTRODUCTION
One of the main tasks in fluid simulation in computer graphics is

to approximate the solutions to the incompressible Euler equations
which govern the dynamics of the velocity fields of incompressible

inviscid fluids. One approach is to instead simulate the equations

in the vorticity-streamfunction formulation of fluid dynamics. This

formulation takes the vorticity field as the primary variable, whereas

the velocity field is reconstructed from the vorticity through a

streamfunction [Bridson 2015, §14.2; Chorin and Marsden 1990,

§1.2]. Numerical methods based on this formulation have more

direct controls over the preservation of local vorticity. The velocity

fields derived from the streamfunction are automatically divergence

free. Researchers have adopted this formulation to simulate vor-

tex dynamics [Gamito et al. 1995; Elcott et al. 2007; Zhang et al.

2015] and two-phase flows [Ando et al. 2015a]. Other usage of the
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Fig. 2. Fluid simulation on minimal surfaces plays an important role in
texturing soap films. Costa’s surface is a minimal surface with genus one
and three boundaries, and therefore nontrivial cohomology. Our method
is the first vorticity-streamfunction method to correctly simulate fluid on
generic surfaces including those with complicated topology.

vorticity-streamfunction formulation in fluid simulation includes

[De Witt et al. 2012] (a vorticity-based spectral method) and [Rioux-

Lavoie et al. 2022] (a Monte Carlo method). Vorticity-streamfunction

formulation is especially advantageous for fluids on 2D domains

including curved surfaces, as the vorticity equation requires only a

scalar advection, as opposed to a vector advection in velocity-based

solvers [Yaeger et al. 1986; Elcott et al. 2007; Azencot et al. 2014].

The use of streamfunctions is also the foundation for divergence-

free flow syntheses [Bridson et al. 2007; Sato et al. 2014, 2021] and

interpolations [Chang et al. 2019, 2022].

While vorticity-streamfunction formulation is well established,

the equations therein are insufficient at describing fluid flows on

general domains, in particular, those that are non-simply-connected.

Such scenarios with nontrivial topology are common, as multiply-

connectedness can arise from the presence of obstacles (Fig. 1),

periodic boundary conditions, or the domain being a surface
1
with

nonzero genus (Fig. 2). The issue with multiply-connected domains

is that they support irrotational flows, known as harmonic fields,
that cannot be represented by the vorticity variable. In topological

terms, the harmonic fields represent the 1st de Rham cohomology
components of the flow.

2
A rarely discussed fact is that harmonic

parts have their own dynamics. The vorticity equation alone is not

enough to describe an Euler fluid flow. One must consider a coupled

system between the vorticity and the harmonic components.

Previous Approaches. Previous work fills in the harmonic compo-

nents using various treatments during the recovery of the velocity

from the vorticity variable. One approach is to reconstruct the ve-

locity field from the vorticity data using the Biot–Savart integral

(which works in the entire Euclidean space with no obstacles) fol-

lowed by adding a pressure gradient [Lin 1941; Bridson 2015, §14.3.7;

Weißmann and Pinkall 2012; Ishida et al. 2022], a vortex sheet over

the obstacle surface [Park and Kim 2005; Weißmann and Pinkall

2010; Golas et al. 2012; Brochu et al. 2012; Vines et al. 2013; Zhang

1
Fluid dynamics on general surfaces especially attracts attention in computer graphics

[Stam 2003; Shi and Yu 2004; Azencot et al. 2014; Huang et al. 2020; Ishida et al. 2020;

Cui et al. 2021], geometry [Boatto and Koiller 2015; Padilla 2018] and biophysics [Rank

and Voigt 2021]. See references within for surveys of the topic.

2
In calculus terms, the de Rham cohomology describes the difference between a curl-free

vector field and the gradient of a function, and between a divergence-free field and the

curl of a vector potential.

Method with fixed harmonic part

Our method

Velocity-based method

Fig. 3. Side-view of smoke passing through a torus-shaped obstacle. Also
see the top row of Fig. 1 (see video 00:31).

and Bridson 2014; Xiong et al. 2021], or mirror-reflected vortices in

the obstacles of specific shapes (e.g. a plane [Angelidis and Neyret

2005]) to prevent the velocity from penetrating the obstacles. These

methods do ensure correct dynamics of the harmonic components

implicitly. However, they work only when the fluid domain is a

subset of a Euclidean space and when the circulation around every

handle of the obstacle is zero. In particular, it does not apply to

flows on surfaces, on periodic domains, or with nonzero circulations

around obstacles.

A few methods skip the vorticity variable and directly reconstruct

streamfunctions from the velocity data on a grid. This technique

is intended to obtain the exact divergence-free flow interpolation

facilitated by the streamfunction [Biswas et al. 2016; Chang et al.

2022]. Unlike integrating from vorticity, the construction is by path-

integrating velocity, which will not lose the harmonic information

of the velocity. However, as we show in our paper (Proposition 5),

global streamfunctions exist only for special cases (e.g. when the

multiply-connectedness arises from removing obstacles from a

simply-connected domain).
3

Another approach is to encapsulate the degrees of freedom of

harmonic fields into inhomogeneous boundary conditions for the

streamfunctions [Mizukami 1983]. Determining the boundary con-

ditions for the streamfunction on each “island” is a well-known

problem in oceanography [Godfrey 1989; Pedlosky et al. 1997]. This

is commonly known as the island rule, which boils down to solving

a global Dirichlet-to-Neumann map problem. Unfortunately, the

treatment only resolves harmonic fields that arise from obstacles in

2D. The analogous formulations in 3D are more sophisticated as

they involve keeping track of circulations along flowing loops. In

general, the approach cannot account for harmonic fields arising

3
These methods are still useful for constructing local streamfunctions.
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Fig. 4. The change of linking between harmonic streamlines (blue) and fluid
vortex lines (green) in a fluid domain exterior to the obstacle (torus).

from periodic boundary conditions or nonzero genus of a surface

domain.

Lastly, a commonly adopted method accounting for harmonic

fields is to extract the harmonic component of the initial velocity

and add it to the streamfunction-represented velocity at each future

time step [Elcott et al. 2007, §4.5; Azencot et al. 2014, Eq. (1); Ando

et al. 2015a, §3]. This method keeps the harmonic parts fixed, as if
they were constant in time. If the initial harmonic components are

all zero, then the treatment is equivalent to neglecting harmonic

components on closed surfaces [Boatto and Koiller 2015, §3], or

setting a (tangentially) zero boundary condition on the streamfunc-

tions [Gamito et al. 1995; Rioux-Lavoie et al. 2022, §4.1]. While most

of these approaches address the nontrivial cohomology generated

by both the obstacles and the genus, they ignore the dynamics of the

harmonic parts. While it might seem that Kelvin’s circulation theo-

rem would imply the conservation of harmonic parts over time, this

is in fact a misinterpretation of the theorem and a misgeneralization

of the preservation of harmonic fields when there is no vorticity

[Thomson 1868]. The absence of changes in harmonic parts can lead

to unrealistic fluid behaviors. For example, omitting the harmonic

dynamics will lead to a fixed total flux over every cross-section of

the domain, e.g. the cross-section of the tunnel in Fig. 1. Notably, a

jet flow shot through the tunnel will be obstructed and disrupted

by an artificial zero total flux condition persisting since the initial

condition. Similar anomalies are pointed out in [Rioux-Lavoie et al.

2022, pp 12] and an errata [Ando et al. 2015b].

New Formulation. In this paper, we derive the missing dynamics

of the harmonic parts for the vorticity-streamfunction formulation

of the Euler equations. The system applies to all multiply-connected

fluid domains. The dynamics are presented in a simple form that is

easy to incorporate into previous vorticity-streamfunction methods.

The dynamics can be summarized as a new physical law of Euler

fluids:

For each cohomology component associated with a

cross-section of the domain, the difference between the

fluid cross-sectional flux and the total linking number
(or winding number in 2D) between the harmonic field
streamlines and the fluid vortex lines (or vortex points
in 2D) is a constant of motion (see Fig. 4).

In other words, the harmonic components, which are all directly

related to the cross-sectional fluxes, evolve precisely at the rate at

vorticity velocity

harmonic basis harmonic

reconstructed
velocity

𝑐1

𝑐𝑚

+

=

curl
−1

Fig. 5. Our pipeline of reconstructing the velocity field from both
the advected vorticity and the correctly updated harmonic coefficients
(𝑐1, . . . , 𝑐𝑚 ) .

which a vortex line cuts through a harmonic streamline. Moreover,

this seemingly intricate rate of topological changes boils down

to a simple integral formula

∫
𝑀
(u × w) · h𝑖 𝑑x in terms of the

computationally available velocity u, vorticity w and harmonic basis

h𝑖 , which makes incorporating the new dynamics light-weight and

highly practical. This is the same as the time-evolution of coefficients

of a vector spectral basis, which includes the harmonic basis, as

proposed in the velocity-based model reduction work by [Liu et al.

2015]. We point out that this equation for the harmonic basis is

necessary to account for the missing dynamics of the harmonic

components in the vorticity-streamfunction formulation, making

the formulation suitable for fluid simulations on all general domains.

We also describe our new conservation law from the perspective of

Hamiltonian fluid mechanics as a Casimir invariant. Note that the
only previously known nontrivial example of a Casimir invariant for

3D incompressible fluids is the helicity [Khesin et al. 2022], which has
played important roles in meteorology, topological fluid mechanics,

and plasma physics. The discovery of the new Casimir invariant

will facilitate more exciting studies in these areas.

In practice, incorporating the new evolution equation of the

harmonic components is quite simple. Express the fluid velocity

field u = curl
−1 w + ∑

𝑖 𝑐𝑖h𝑖 in terms of the vorticity field w and

an orthonormal basis (h𝑖 )𝑖 for the harmonic fields (see Fig. 5). On

top of a traditional vorticity equation solver that updates w, one

only needs to add an extra step for updating the coefficients ¤𝑐𝑖 =∫
𝑀
(u×w) ·h𝑖 𝑑x (see Fig. 6). Through numerical examples, we show

the importance of the dynamics of the harmonic components for

reproducing physically correct behaviors of fluid flows on surfaces

and on 3D domains with nontrivial topology (Fig. 3).

Contributions. Highlights of this paper include
• Deriving the missing dynamics of the harmonic parts for

incompressible inviscid fluids, and a simple and practical

method for incorporating it to both 2D and 3D simulations

(Section 4).

• A new conservation law between harmonic streamlines and

vortex lines in an Euler fluid (Theorem 2).

• The first vorticity-streamfunction-based fluid solver on gen-

eral surfaces that is consistent with the Euler equations.

(Alg. 2 (Fig. 2)).

• A new Hamiltonian formulation for incompressible Euler

equations featuring new Casimir invariants (Section 6).
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Fig. 6. The rate of change of the harmonic coefficients (𝑑𝑐1/𝑑𝑡, . . . ,𝑑𝑐𝑚/𝑑𝑡 )
is computed by projecting the Lamb vector onto the harmonic basis. The
Lamb vector is the cross-product of velocity and vorticity fields.

1.1 Additional Related Work
In addition to computer graphics and oceanography, we briefly

review the fundamental research on the vorticity-streamfunction

formulation in related areas.

1.1.1 Computational Fluid Dynamics. The vorticity-streamfunction

formulation is also extensively studied in the literature of compu-

tational fluid dynamics (CFD). There, the majority of attention is

drawn to finding a compatible boundary condition in the presence of

viscosity. Under viscosity, the boundary value of vorticity diffuses to

the interior and can influence the resulting streamfunction from the

Poisson solve. Therefore, the question becomes how to couple the

boundary values of the vorticity and the streamfunction such that

the resulting velocity satisfies both the no-through and no-slip condi-

tions at the boundary. An initial pursuit for the boundary treatments

by [Thom 1933] is followed by many variants [Taylor and Hood 1973;

Orszag and Israeli 1974], revisions, and discussions [Quartapelle

and Valz-Gris 1981; Anderson 1989; Quartapelle 1993; E and Liu

1996] throughout the remainder of the century. A comprehensive

review on the highly debated topic of boundary conditions for the

vorticity-streamfunction formulation can be found in [Rempfer 2006,

§3.4]. However, despite the large body of work searching for a proper

vorticity-streamfunction formulation in CFD, few mentioned the

effect of non-trivial topology. Different cohomology data of the flow

can correspond to different sets of coupled vorticity-streamfunction

boundary configurations, but these cohomological factors, which

have their own dynamics, are irrotational and invisible to the vor-

ticity variable. A few vorticity-streamfunction formulations that

properly handle the cases of non-simply-connected domains are

described in [Mizukami 1983; Tezduyar et al. 1988]. However, these

approaches only account for the non-simply-connectedness induced

from obstacles rather than for general cases where cohomology

components can arise.

1.1.2 Geometric Fluid Dynamics. Geometric fluid dynamics is the

mathematical discipline that discusses fluid dynamics in the geomet-

ric mechanics framework, including Hamiltonian systems [Salmon

1988; Morrison 1998] and geodesic equations on Lie groups [Arnold

1966]. The mathematical foundation has inspired many structure-

preserving fluid simulation algorithms in computer graphics [Elcott

et al. 2007; Pavlov et al. 2011; Azencot et al. 2014; Liu et al. 2015;

Chern et al. 2016; Yang et al. 2021; Nabizadeh et al. 2022]. There,

the Hamiltonian formulation of fluid dynamics often employs the

vorticity-streamfunction formulation [Marsden and Weinstein 1983;

Morrison 1998]. Precisely, the phase space (with Poisson structure) is

given by the space of vorticities, and the evaluation of Hamiltonian

is defined with the aid of streamfunctions. Unfortunately, these

descriptions would omit the cohomology components of the velocity.

A way to take cohomology components into account is to define

the phase space as the quotient space Ω1/𝑑Ω0
of velocity covectors

modulo exact forms [Arnold and Khesin 1998, Theorem I.7.5; Os-

eledets 1989; Pavlov et al. 2011; Nabizadeh et al. 2022]. However, this

approach makes the phase space more abstract than the physically

more understandable vorticity. To our knowledge, our work is the

first to express the Hamiltonian formulation explicitly in terms of

both the vorticity and the cross-sectional fluxes that parameterize

the cohomology. Under this coordinate, we discover new Casimir
invariants [Morrison 1998; Khesin and Chekanov 1989] that relate

the cohomological flux and its linking number with the vortex lines.

A line of work that examines fluids’ cohomology is the study

of the commutant of the Lie group of volume-preserving diffeo-

morphisms [Arnold 1969; Banyaga 1978; Arnold and Khesin 1998,

Definition I.7.12]. They give an insightful characterization of the sub-

group of flow maps generated by velocities that have no harmonic

parts. This subgroup turns out to be the commutant of the group

of all flow maps. However, the line of work did not comment on

whether the physical fluid flow would stay or leave this commutant

subgroup. The recent results on the helicity uniqueness conjecture
[Khesin et al. 2022] were also restricted to this subgroup. Our work

includes illustrative examples that show a fluid flow with initially

zero harmonic components will later gain harmonic components. We

show that fluid flows are generally not constrained in the commutant

subgroup of the Lie group of volume-preserving flow maps.

2 BACKGROUND
In this section, we review the vorticity-streamfunction formulation

for incompressible fluids. We present the theory of the paper in

exterior calculus for its ability to unify 2D and 3D languages and

to provide geometric intuitions. Readers who are less familiar

with exterior calculus may find the following resources useful: (a)

a comprehensive review of exterior calculus in Appendix A.1, (b)

translations of exteior calculus operations to vector calculus in

Tables 1 and 2, and (c) a summary of this section written in terms of

vector calculus in Section 2.6.

We use the standard notations [Lee 2013, Chapter 17; Hatcher

2002, Chapter 2] of𝐶• (𝑀), 𝑍• (𝑀), 𝐵• (𝑀),𝐻• (𝑀) to denote, respec-
tively, the space of chains, cycles, boundaries, and homologies, and
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Table 1. Exterior calculus operations written in terms of vector calculus
operations on a 2D domain 𝑀 . Here, 𝑎,𝑏 are scalar functions, a, b, v are
vector fields, and J is the 90

◦ rotation operator. The map 𝑗 : 𝜕𝑀 ↩→ 𝑀 is
the inclusion map of the boundary, whose normal vector is denoted by n.

𝛼 = 𝑎 ∈ Ω0 𝛼 = a♭ ∈ Ω1 𝛼 = ★𝑎 ∈ Ω2
Meaning

𝑑𝛼 (∇𝑎)♭ ★

(
𝜕𝑎

2

𝜕𝑥
1

− 𝜕𝑎
1

𝜕𝑥
2

)
0 Exterior derivative

𝛿𝛼 0 −∇ · a (−J∇𝑎)♭ Codifferential

𝑖v𝛼 0 v · a (𝑎Jv)♭ Interior product

𝛼 ∧ 𝑏 𝑎𝑏 (𝑏a)♭ ★(𝑎𝑏 ) Wedge product

𝛼 ∧ b♭ (𝑎b)♭ ★(𝑎1𝑏2 − 𝑎2𝑏1 ) 0

𝛼 ∧ (★b♭ ) (𝑎Jb)♭ ★(a · b) 0

𝛼 ∧ (★𝑏 ) ★(𝑎𝑏 ) 0 0

Lv 𝛼 v · ∇𝑎
(v · ∇a
+ (∇v)⊺a

)♭
★

(v · ∇𝑎
+ (∇ · v)𝑎

)
Lie derivative

𝑗∗𝛼 = 0 𝑎 |𝜕𝑀 = 0 a |𝜕𝑀 ∥ n Dirichlet BC

𝑗∗ ★𝛼 = 0 a |𝜕𝑀 ⊥ n 𝑎 |𝜕𝑀 = 0 Co-Dirichlet BC

Table 2. Same as Table 1 but on a 3D domain.

𝛼 = 𝑎 ∈ Ω0 𝛼 = a♭ ∈ Ω1 𝛼 = ★a♭ ∈ Ω2 𝛼 = ★𝑎 ∈ Ω3

𝑑𝛼 (∇𝑎)♭ ★(∇ × a)♭ ★(∇ · a) 0

𝛿𝛼 0 −∇ · a (∇ × a)♭ ★(−∇𝑎)♭

𝑖v𝛼 0 v · a (−v × a)♭ ★(𝑎v)♭

𝛼 ∧ 𝑏 𝑎𝑏 (𝑏a)♭ ★(𝑏a)♭ ★(𝑎𝑏 )
𝛼 ∧ b♭ (𝑎b)♭ ★(a × b)♭ ★(a · b) 0

𝛼 ∧ (★b♭ ) ★(𝑎b)♭ ★(a · b) 0 0

𝛼 ∧ (★𝑏 ) ★(𝑎𝑏 ) 0 0 0

Lv 𝛼 v · ∇𝑎
(v · ∇a
+ (∇v)⊺a

)♭
★

(v · ∇a− a · ∇v
+ (∇ · v)a

)♭
★

(v · ∇𝑎
+ (∇ · v)𝑎

)
𝑗∗𝛼 = 0 𝑎 |𝜕𝑀 = 0 a |𝜕𝑀 ∥ n a |𝜕𝑀 ⊥ n
𝑗∗ ★𝛼 = 0 a |𝜕𝑀 ⊥ n a |𝜕𝑀 ∥ n 𝑎 |𝜕𝑀 = 0

𝐶• (𝑀, 𝜕𝑀), 𝑍• (𝑀, 𝜕𝑀), 𝐵• (𝑀, 𝜕𝑀),𝐻• (𝑀, 𝜕𝑀) for their relative-to-
boundary counterparts. See Appendix A.2 for further discussion on

homology and relative homology.

2.1 Euler Equations
The incompressible inviscid fluid is governed by the following Euler
equations. We assume the fluid density to be 1. On an 𝑛-dimensional

fluid domain𝑀 (𝑛 = 2 or 3), the time-dependent fluid velocity vector

field u ∈ Γ(𝑇𝑀) evolves under
𝜕
𝜕𝑡 u + u · ∇u = −∇𝑝 in𝑀 ; (momentum equation), (1a)

∇ · u = 0 in𝑀 ; (divergence-free), (1b)

u · n = 0 on 𝜕𝑀 ; (no-through boundary). (1c)

Here, n denotes the normal vector of the domain boundary 𝜕𝑀 ,

and the scalar function 𝑝 ∈ Ω0 (𝑀) is the fluid pressure field. The
covector (1-form) formulation [Nabizadeh et al. 2022] of (1) for the

velocity 1-form 𝜂 = u♭ ∈ Ω1 (𝑀) is given by
𝜕
𝜕𝑡 𝜂 +Lu 𝜂 = −𝑑𝑝L in𝑀 ; (circulation equation), (2a)

𝛿𝜂 = 0 in𝑀 ; (co-closedness), (2b)

𝑗∗ ★𝜂 = 0 on 𝜕𝑀 ; (co-Dirichlet BC), (2c)

where 𝑑 is the exterior derivative, 𝛿 the codifferential, Lu the Lie

derivative along u = 𝜂♯ , and ★ the Hodge star. The Lagrangian

pressure 𝑝L ∈ Ω0 (𝑀) is related to physical pressure by 𝑝L = 𝑝− 1

2
|u|2.

The boundary condition is described using the pullback operator

𝑗∗ of the canonical inclusion map 𝑗 : 𝜕𝑀 ↩→ 𝑀 . Note that we call a

differential form Dirichlet if it lies in ker( 𝑗∗), and co-Dirichlet if it
lies in ker( 𝑗∗★).4
All possible velocity fields form a linear subspaceV1

of all the

co-closed (2b) and co-Dirichlet (2c) 1-forms.

Definition 1 (Co-Dirichlet co-closed subspace). Let the subspace of
co-Dirichlet co-closed 𝑘-forms be denoted by

V𝑘 B
{
𝜂 ∈ Ω𝑘 (𝑀)

���𝛿𝜂 = 0, 𝑗∗ ★𝜂 = 0

}
⊂ Ω𝑘 (𝑀). (3)

The readers may verify that the co-Dirichlet co-closed subspace

V𝑘
is 𝐿2

-perpendicular
5
to the space im(𝑑) of exact forms. Further-

more, together they span the space Ω𝑘 (𝑀) of all k-forms.

Proposition 1. Ω𝑘 (𝑀) = im(𝑑)
⊥
⊕ V𝑘 .

Proof. See Appendix E.1. □

As a result of this proposition, one can view the Lagrangian

pressure term 𝑑𝑝L in (2a) as the 𝐿2
normal projection ontoV1

. Note

that by Stokes theorem, the addition of an exact form 𝑑𝑝L does not

affect the circulation along closed curves, i.e.
∮
𝐶
𝜂 =

∮
𝐶
𝜂 + 𝑑𝑝𝐿 for

any closed curve 𝐶 . Additionally, 𝜕
𝜕𝑡 𝜂 +Lu 𝜂 = −𝑑𝑝𝐿 implies that

the circulation

∮
𝐶𝑡

𝜂𝑡 is conserved if 𝐶𝑡 is a closed curve advected

by the fluid.
6

2.2 Vorticity Equation
The vorticity 2-form is defined as 𝜔 = 𝑑𝜂 which measures local

circulations. By taking the exterior derivative of (2a), applying

𝑑𝑑 = 0, and using the commutativity between Lu and 𝑑 , we obtain

the vorticity equation
𝜕
𝜕𝑡𝜔 +Lu 𝜔 = 0. (4)

Eq. (4) is often regarded as a formulation “equivalent to (2a).” It

is the basis of the class of fluid solvers known as vortex methods.
However, to fully establish the equivalence between (4) and (2a) (and

to implement a vortex method), one must know how to reconstruct

the velocity 1-form 𝜂 = u♭ ∈ V1
from a given vorticity 2-form

𝜔 ∈ im(𝑑) ∩ Ω2 (𝑀) such that 𝑑𝜂 = 𝜔 . The reconstruction problem

is posed as follows.

Problem 1. Given an exact (𝑘 + 1)-form 𝜔 ∈ im(𝑑) ⊂ Ω𝑘+1 (𝑀),
find 𝜂 ∈ V𝑘 that solves 𝑑𝜂 = 𝜔 .

Unfortunately, the solution 𝜂 may not be unique, depending on the

fluid domain𝑀 . If 𝜁 ∈ ker(𝑑) ∩ V𝑘
, readers can verify that 𝜂 + 𝜁 is

also a solution to Problem 1. When 𝑘 = 1, the subspace ker(𝑑) ∩V1

is the space of all closed and co-closed 1-forms (corresponding to

curl-free and divergence-free vector fields) satisfying the co-Dirichlet

4
The co-Dirichlet boundary condition is referred to as the Neumann boundary condition
in [Schwarz 2006; Poelke and Polthier 2016]. For 1 form in 3D domains, [Abraham

et al. 2012, §Hodge–de Rham theory] and [Zhao et al. 2019] refer to the Dirichlet and

co-Dirichlet conditions as normal and tangential conditions respectively. We document

how Dirichlet and co-Dirichlet boundary conditions relates to normal and tangential
conditions for 𝑘-forms in 2D and 3D respectively in Tables 1 and 2.

5
Here, the 𝐿2

structure is ⎷𝛼, 𝛽⌄ =
∫
𝑀
𝛼 ∧★𝛽 .

6
This is commonly known as the Kelvin circulation theorem. See more in [Nabizadeh

et al. 2022].
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boundary condition (corresponding to the no-through boundary

condition for vector fields). In general, the space ker(𝑑) ∩ V𝑘
is the

space of co-Dirichlet harmonic forms

H𝑘
C
(𝑀) = ker(𝑑) ∩ V𝑘

=

{
ℎ ∈ Ω𝑘 (𝑀)

���𝑑ℎ = 0, 𝛿ℎ = 0, 𝑗∗ ★ℎ = 0

}
. (5)

Here, the subscript “C” indicates the co-Dirichlet boundary condition

𝑗∗ ★ℎ = 0.

2.2.1 Roadmap for Analyzing Problem 1. The standard method for

reconstructing velocity from vorticity is through a streamfunction

[Bridson 2015]. We show that this streamfunction and its boundary

condition emerge naturally in the context of solving a particular

solution to Problem 1.We first introduce the concept of pseudoinverse
of the exterior derivative in Section 2.3. Then we apply the idea to

the problem of velocity reconstruction from vorticity in Section 2.4.

2.3 Pseudoinverse of 𝑑
Definition 2. Define 𝑑+ : Ω𝑘+1 (𝑀) → Ω𝑘 (𝑀) as the Penrose–Moore
pseudoinverse of the exterior derivative 𝑑 : Ω𝑘 (𝑀) → Ω𝑘+1 (𝑀) with
respect to the 𝐿2-norms on Ω𝑘 (𝑀) and Ω𝑘+1 (𝑀). Explicitly, given
𝛽 ∈ Ω𝑘+1, let 𝑃

im(𝑑 )𝛽 ∈ im(𝑑) ⊂ Ω𝑘+1 be the orthogonal projection
of 𝛽 on im(𝑑):

𝑃
im(𝑑 )𝛽 B 𝑑

(
argmin

𝛼∈Ω𝑘 (𝑀 )
∥𝑑𝛼 − 𝛽 ∥2

)
. (6)

The pseudoinverse 𝑑+𝛽 ∈ Ω𝑘 (𝑀) is given by the least-norm solution

𝑑+𝛽 B argmin

𝑑𝛼=𝑃
im(𝑑 )𝛽

1

2

∥𝛼 ∥2 . (7)

The general theory of pseudoinverses suggests that the pseudoin-

verse of a linear operator (𝑑 in our case) maps onto the orthogonal

complement of the kernel of such a linear operator. Furthermore,

the projection in (6) suggests that the pseudoinverse annihilates

anything that is orthogonal to the image of the linear operator.

Proposition 2. The space of𝑘-forms has an orthogonal decomposition

Ω𝑘 (𝑀) = ker(𝑑)
⊥
⊕ im(𝑑+), (8a)

Ω𝑘+1 (𝑀) = im(𝑑)
⊥
⊕ ker(𝑑+). (8b)

The orthogonal projectors to im(𝑑) ⊂ Ω𝑘+1 (𝑀) and im(𝑑+) ⊂ Ω𝑘 (𝑀)
are respectively

𝑃
im(𝑑 ) = 𝑑𝑑+, 𝑃

im(𝑑+ ) = 𝑑+𝑑. (9)

Proof. See Appendix E.2. □

Proposition 3. The subspaces im(𝑑+) ⊂ Ω𝑘 (𝑀) and im(𝑑) ⊂
Ω𝑘+1 (𝑀) are isomorphic by the map 𝑑 |

im(𝑑+ ) : im(𝑑+) → im(𝑑)
and its inverse 𝑑+ |

im(𝑑 ) : im(𝑑) → im(𝑑+).

Proof. See Appendix E.3. □

H
HjH
HY

im(𝑑+ )

Ω𝑘 (𝑀 )

Ω𝑘+1 (𝑀 )

im(𝑑 )

𝑑

𝑑+

ker(𝑑 )
ker(𝑑+ )

Next, we characterize im(𝑑+).
Proposition 4. The image of 𝑑+ is a subspace ofV𝑘 . In particular:

im(𝑑+) =
{
𝛿𝜓

���𝜓 ∈ Ω𝑘+1 (𝑀), 𝑗∗ ★𝜓 = 0

}
= 𝛿 (ker( 𝑗∗★)) . (10)

Proof. See Appendix E.4. □

Putting together Propositions 1, 2, 4 and Eq. (5), we obtain

Corollary 1. The space of 𝑘-forms are orthogonally decomposed into:

Ω𝑘 (𝑀) =

ker(𝑑 )︷               ︸︸               ︷
im(𝑑)

⊥
⊕ H𝑘

C
(𝑀)

⊥
⊕ im(𝑑+)︸                 ︷︷                 ︸
V𝑘

. (11)

im(𝑑+ )

im(𝑑 ) H𝑘
C

ker(𝑑 )

V𝑘

2.4 Stream-Form
In the context of fluids, for each vorticity 2-form 𝜔 ∈ im(𝑑) ⊂
Ω2 (𝑀), a particular solution to Problem 1 is 𝜂 = 𝑑+𝜔 . By Proposi-

tion 4, this velocity 1-form is given by the codifferential 𝛿𝜓 of some

𝜓 ∈ Ω2 (𝑀) that satisfies co-Dirichlet boundary condition. We call𝜓

the stream-form.

On a 2D domain, the stream-form𝜓 ∈ Ω2 (𝑀) is typically repre-

sented as𝜓 = ★ ˆ𝜓 by a scalar function
ˆ𝜓 ∈ Ω0 (𝑀), called the stream-

function. The co-Dirichlet boundary condition for𝜓 translates to the

Dirichlet boundary condition
ˆ𝜓 |𝜕𝑀 = 0 for

ˆ𝜓 . For a streamfunction-

represented velocity vector field, we have u = −J∇ ˆ𝜓 where J is

the counterclockwise 90
◦
rotation operator.

On a 3D domain, the stream-form 𝜓 ∈ Ω2 (𝑀) is usually repre-

sented by a vector field 𝝍 ∈ Γ(𝑇𝑀) as𝜓 = ★𝝍♭
. The vector field 𝝍

is called vector potential, stream vector field, or just streamfunction.

The velocity is given by u = ∇ × 𝝍 and the boundary condition

is that n × 𝝍 |𝜕𝑀 = 0, i.e. the stream vector field is normal to the

boundary [Bridson et al. 2007].

2.4.1 Poisson Problem for Stream-Forms. To concretely construct

𝜓 ∈ Ω2 (𝑀) from 𝜔 ∈ Ω2 (𝑀) one solves a Poisson problem. For

details related to this Poisson problem and its boundary conditions,

see Appendix B.

2.4.2 Comments on 2D Streamfunctions. In many previous works

involving 2D streamfunctions
ˆ𝜓 ∈ Ω0 (𝑀), the streamfunctions are

allowed to have constant but nonzero boundary conditions. The
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velocity field 𝜂 = 𝛿 (★ ˆ𝜓 ) represented by this type of streamfunctions

do carry the harmonic components. However, the existence of such

streamfunctions only works for domains with special topology:

Proposition 5. If a 2D domain𝑀 is the result of the removal of a
few obstacles from a topological disk, then every 𝜂 ∈ V1 is coexact.

Proof. See Appendix E.5. □

In general, on a domain𝑀 that is a surface with a nonzero genus

and with possibly a few obstacles removed, there are velocities that

cannot be expressed by streamfunctions.

2.5 Summary
The vorticity data 𝜔 ∈ im(𝑑) ⊂ Ω2 (𝑀) is in one-to-one corre-

spondence with a stream-form-represented velocity field 𝑑+𝜔 ∈
im(𝑑+) ⊂ V1

(Proposition 3). However, as shown in Corollary 1,

the space im(𝑑+) of stream-form-represented velocities is not the

entirety of the space of all incompressible velocitiesV1
. The gap is

the space of co-Dirichlet harmonic formsH1

C
(𝑀) that is isomorphic

to the 1st de Rham cohomology 𝐻1

dR
(𝑀) = ker(𝑑 )/im(𝑑 ), which is

nontrivial whenever the domain is not simply-connected. In the

context of Problem 1,H1

C
(𝑀) is the space for non-uniqueness for

the velocity reconstruction.

On a general non-simply-connected fluid domain, in order to

pinpoint a velocity 𝜂 ∈ V1
in terms of vorticity, one must use both

the vorticity data 𝜔 and a co-Dirichlet harmonic form ℎ ∈ H1

C
(𝑀):

𝜂 = 𝑑+𝜔 + ℎ. (12)

While the evolution equation of the vorticity𝜔 is well-known, the

evolution of the co-Dirichlet harmonic form ℎ has been overlooked

in all vorticity-streamfunction-based methods. We investigate the

time-evolution of this harmonic component of Euler equations in

Section 3.

2.6 Summary in Vector Calculus
Here we reiterate the above background in vector calculus via

Tables 1 and 2 to gain perspective in the vector counterparts of

propositions about differential forms.

The fluid velocity that we wish to study is the space of vector

fields that are divergence free and satisfying no-through boundary

condition 𝑉 B {u | ∇ · u = 0, (u · n)𝜕𝑀 = 0}. This is the vector
calculus counterpart ofV1

(Definition 1).

As documented in Tables 1 and 2, the vorticity𝜔 = 𝑑𝜂 corresponds

to the vorticity vector field w = ∇ × u in 3D or a vorticity scalar

𝑤 = ∇ × u in 2D. Section 2.3 introduces the notion of 𝑑+, which can

be seen as taking the inverse of the curl operator. This “curl
−1
” is

more precisely the pseudoinverse curl
+
of the non-invertible curl

operator. By Proposition 4, the image of the curl
+
operator is given

by velocities represented by streamfunctions (Section 2.4) subject to

a specific boundary condition

im(curl
+) = {∇ × 𝝍 | (n × 𝝍)𝜕𝑀 = 0} in 2D, (13a)

im(curl
+) =

{
−J∇ ˆ𝜓

���𝜓 |𝜕𝑀 = 0

}
in 3D. (13b)

Known as the boundary-aware Helmholtz–Hodge decomposition,

Corollary 1 asserts that the space Γ(𝑇𝑀) of vector fields can be

orthogonally decomposed into

Γ(𝑇𝑀) =

ker(curl)︷           ︸︸           ︷
im(grad)

⊥
⊕ 𝐻

⊥
⊕ im(curl

+)︸            ︷︷            ︸
𝑉

, (14)

where 𝐻 is the vector counterpart of (5) collecting harmonic vector

fields satisfying the no-through boundary condition

𝐻 = ker(curl) ∩𝑉
= {h | ∇ · h = 0,∇ × h = 0, (h · n)𝜕𝑀 = 0} . (15)

Proposition 3 further shows that there is a one-to-one correspon-

dence im(curl
+) � im(curl) between the space im(curl

+) and im(curl).
This means that the vorticity vector field w in im(curl) (or scalar
field𝑤 in 2D) is in one-to-one correspondence with a velocity field

u = curl
+w in im(curl

+) (or u = curl
+𝑤 in 2D) represented by a

streamfunction field 𝝍 (or a scalar function
ˆ𝜓 in 2D) as characterized

in (13). In particular, as demonstrated in (14), the space𝑉 of all incom-

pressible velocities is larger than the space im(curl
+) � im(curl) that

can be captured by the vorticity data. The gap is the space 𝐻 of har-

monic vector fields with no-through boundary conditions. This gap

𝐻 becomes nontrivial when the fluid domain is not simply-connected.

Specifically,𝐻 is the kernel of the problem of reconstructing velocity

from vorticity, which we discussed in Problem 1.

The decomposition (14) also reveals the difference between the

velocity-based pressure projection and a vorticity-streamfunction

solver in the context of advection-projection methods in fluid simu-

lations. A pressure projection step removes im(grad) from Γ(𝑇𝑀),
keeping the information about the harmonic component 𝐻 in 𝑉 .

This is consistent with the Euler equation. In contrast, a vorticity-

streamfunction solver reconstructs the velocity using curl
+
from the

vorticity data, effectively removing both im(grad) and 𝐻 compo-

nents from Γ(𝑇𝑀). In particular, the vorticity-streamfunction solver

leaves out the dynamics in the𝐻 component. As a result, different be-

haviors occurs between these twomethods on non-simply-connected

domains as demonstrated in Fig. 1.

3 THEORY
The goal of this section is to develop the full equations of motion

for both 𝜔,ℎ in (12). We first clarify the physical intuition to the

harmonic component (Section 3.1). Next, we introduce the Lamb
form (differential form counterpart of the Lamb vector), which is

a central piece of the theory (Section 3.2). Finally, we derive the

evolution equations for the harmonic part (Section 3.3), and explain

the new physical law associated to it (Section 3.4).

3.1 Harmonic Part and Flux
In the fluid literature, the harmonic part of a velocity field is often

loosely depicted as “flows around obstacles or holes.” Some parame-

terize the harmonic components by the circulations on a set of 1st

homology basis (loops around obstacles) [Marsden and Weinstein

1983, §4; Elcott et al. 2007, §4.6]. While it is technically true that

there is an isomorphism 𝐻1 (𝑀) � 𝐻1

dR
(𝑀) � H1

C
(𝑀), different

choices of loops lead to different parameterizations of the harmonic

part of the velocity, even if the loops are only re-chosen within the
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same homology class. This is because the mapping between the

circulations and the strengths of harmonic components depends

on an arbitrary choice of representative loops for 𝐻1 (𝑀) where
we measure the circulations. For a consistent parameterization

for the harmonic component, one must fix this arbitrary choice

of loops. This is in contrast to picturing flowing loops as in the

setup of Kelvin’s circulation theorem. In fact, Kelvin’s theorem on

circulation conservation along flowing loops implies nothing about

the conservation of the harmonic components [Thomson 1868].

As detailed below, we clarify a precise mapping between the

harmonic component and a physical quantity of the fluid that is

independent of the choice of artificial test geometry.

The harmonic component ℎ of a velocity field 𝜂 in (12)

is directly related to the physical fluxes over cross-

sectional surfaces.

3.1.1 Cross-sectional Fluxes. Fluid flux is measured over cross-

sections of a fluid domain. A surface 𝑆 ∈ 𝐶𝑛−1 (𝑀) as an (𝑛−1)-chain
is called cross-sectional if 𝜕𝑆 ⊂ 𝜕𝑀 or 𝜕𝑆 = ∅. In relative homology

theory, these cross-sectional surfaces are also known as relatively
closed surfaces, or relative cycles, denoted by 𝑆 ⊂ 𝑍𝑛−1 (𝑀, 𝜕𝑀).
Definition 3. For each incompressible velocity field 𝜂 ∈ V1 and
cross-sectional surface 𝑆 ⊂ 𝑍𝑛−1 (𝑀, 𝜕𝑀), define

Flux(𝜂) (𝑆) B
∫
𝑆

★𝜂. (16)

The definition of the Flux operator can be written in vector

calculus as well. In 3D, Flux(u) (𝑆) B
∬
𝑆
u · n 𝑑𝑆 , where n is the

normal vector of surface 𝑆 . In 2D, Flux(u) (𝑆) B −
∫
𝑆
(Ju) · 𝑑s.

homologous nonhomologous

𝑆
1

𝑆
2

𝑆
3

𝑈

The operator Flux : V1 × 𝑍𝑛−1 (𝑀, 𝜕𝑀) →
R is a bilinear form. Using the incompress-

ibility conditions of 𝜂 ∈ V1
, one finds that

Flux(𝜂) (𝑆1) = Flux(𝜂) (𝑆2) whenever 𝑆1, 𝑆2

coborder a fluid region; that is 𝑆1 − 𝑆2 ≡
𝜕𝑈 mod 𝐶𝑛−1 (𝜕𝑀) for some 𝑈 ∈ 𝐶𝑛 (𝑀),
or that 𝑆1 − 𝑆2 ∈ 𝐵𝑛−1 (𝑀, 𝜕𝑀), or that 𝑆1 and 𝑆2 are homol-
ogous. Therefore, Flux(𝜂) (·) of any velocity data 𝜂 assigns a

well-defined flux data on each homology class 𝐻𝑛−1 (𝑀, 𝜕𝑀) =

𝑍𝑛−1 (𝑀,𝜕𝑀 )/𝐵𝑛−1 (𝑀,𝜕𝑀 ) of cross-sections. The specific surface repre-
senting the cross-section from the homology is not important.

The following proposition summarizes the above discussion and

formally treats Flux as a map that sends velocity data to a set of

flux data over the homology classes of cross-sections.

Proposition 6. For each 𝜂 ∈ V1, the linear functional Flux(𝜂) :
𝑍𝑛−1 (𝑀, 𝜕𝑀) → R is well-defined over the relative (𝑛 − 1)-homology
𝐻𝑛−1 (𝑀, 𝜕𝑀) = 𝑍𝑛−1 (𝑀,𝜕𝑀 )/𝐵𝑛−1 (𝑀,𝜕𝑀 ) . As such we obtain a bilinear
form Flux(𝜂) ( [𝑆]) B Flux(𝜂) (𝑆) overloading on the same name:

Flux : V1 × 𝐻𝑛−1 (𝑀, 𝜕𝑀) → R. (17)

By currying, we may view the Flux operator as a linear map that
sends a velocity to the dual space of the relative (𝑛 − 1)-homology:

Flux : V1
linear−−−−−→ 𝐻𝑛−1 (𝑀, 𝜕𝑀)∗ . (18)

Proof. See Appendix E.6. □

Now, we show that (18) gives an isomorphism between the space

H1

C
(𝑀) ⊂ V1

of harmonic components and the space𝐻𝑛−1 (𝑀, 𝜕𝑀)∗
of flux data on cross-sections. The first observation is that the flux

data Flux(𝜂) is independent of (and only of) the stream-form part

im(𝑑+) from vorticity. This property is particularly neat as im(𝑑+) is
the orthogonal complement ofH1

C
(𝑀) withinV1

(cf. Corollary 1).

Proposition 7. ker(Flux) = im(𝑑+) .

Proof. See Appendix E.7. □

Moreover, every assignment of flux data is realizable by some

co-Dirichlet harmonic form.

Proposition 8. Flux : V1 → 𝐻𝑛−1 (𝑀, 𝜕𝑀)∗ is surjective.

Proof. See Appendix E.8. □

Diagrammatically, Propositions 7 and 8 can be summarized as a

short exact sequence.

0→ im(𝑑) 𝑑+−−→ V1
Flux−−−−→ 𝐻𝑛−1 (𝑀, 𝜕𝑀)∗ → 0. (19)

H1

C
(𝑀 )

im(𝑑+ )im(𝑑 )

𝐻𝑛−1 (𝑀, 𝜕𝑀 )∗

𝑑+

Flux

space of

vorticity

harmonic

velocities

stream-form

velocities

space of

cross-sectional

flux data

The diagram shows that the spaceV1
of velocities is split into

two “coordinates”: the stream-form part im(𝑑+) and the harmonic

partH1

C
(𝑀). The stream-form part is parameterized by the vorticity

data (Proposition 3), and the harmonic part is parameterized by the

cross-sectional fluxes

Flux|H1

C
(𝑀 ) : H

1

C
(𝑀) �−→ 𝐻𝑛−1 (𝑀, 𝜕𝑀)∗ . (20)

In sum, each fluid state is described by two equally important

pieces of information associated with concrete physical measure-

ments. They are the vorticity field and the cross-sectional fluxes.

With this endowment of physical meaning to fluid’s cohomology, we

can discuss its expected behavior by drawing on physical intuition.

3.1.2 Unphysicality of Conservation of Harmonic Part. Many previ-

ousmethods assume a time-constant harmonic part [Elcott et al. 2007,

§4.5; Azencot et al. 2014, Eq. (1); Ando et al. 2015a, §3; Rioux-Lavoie

et al. 2022, §4.1]. By Section 3.1.1, a time-constant harmonic part is

equivalent to time-constant flux on every cross-section. Constant

fluxes can lead to unphysical behavior. Imagine a traveling vortex

pair (or vortex ring) initially distant from a cross-sectional surface,

implying almost zero flux on the surface. Then the vortices will have

a much more challenging time passing through that surface since

the total flux over the surface is maintained at zero.

Fig. 7 shows a simple demonstration of this setup with the Kirchoff

point vortex model computed using Biot–Savart integration. Kelvin’s

method of reflection is employed for handling circular obstacles. To

obtain unphysical dynamics with conserved harmonic components,

one adds an additional point vortex at the center of each obstacle

so that the flux between the obstacles stays zero. These additional

compensating vortices repel the vortex pair in the physical domain.
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�
vortex pair �

�obstacle

time

Physically correct
vortex dynamics

Vortex dynamics
with conserved
harmonic
components
(unphysical)

Fig. 7. A vortex pair approaching two circular obstacles in the plane. The physically correct behavior for the vortices is to pass through the space between the
two obstacles (top row). An artificial fluid dynamics that preserves the harmonic component of the flow repels the vortices from passing between the obstacles
(bottom row). The simulation is computed using Kirchoff’s point vortex dynamics with Kelvin’s method of reflection for handling circular obstacles.

In general, in a fluid solver where the harmonic components are

constant, the approaching vortices induce a repulsing momentum

that deflects the vortices. Section 5.2 includes a quantitative study

(Fig. 15) of this phenomenon for a general fluid solver.

3.2 Lamb 1-Form
To describe the full evolution equation in Section 3.3, we first intro-

duce a relevant quantity called the Lamb form.

Definition 4. For each velocity field 𝜂 = u♭ ∈ V1, define the Lamb

1-form as

𝜆 B −𝑖u𝜔, where 𝜔 = 𝑑𝜂. (21)

The vector counterpart of the Lamb form is the Lamb vector
l B 𝜆♯ given by

l = u ×w, where w = ∇ × u (22)

in 3D, and l = −𝑤Ju in 2D, where𝑤 is the scalar vorticity.

Geometrically, the Lamb 1-form, as a cloud of codimension-1

objects, is the resulting ribbon surfaces (or curve segments in 2D)

from extruding vortex lines (or point vortices in 2D) along the

(negative) velocity field for a unit of time. Since the vortices are

just passively transported by the fluid flow as described by the Lie

advection equation (4), one may think of 𝜆 as the trailing, or the

“motion blur,” of the moving vortices.

Lamb 1-form “motion blur.”

u

𝜔 𝜆

Wemay rewrite Euler’s equation in terms of the Lamb form. Using

Cartan’s formula Lu = 𝑖u𝑑 + 𝑑𝑖u, we rearrange (2a) into
𝜕
𝜕𝑡 𝜂 − 𝜆 = −𝑑𝑝B, (23)

where 𝑝B = 𝑝 + 1

2
|u|2 = 𝑝L + |u|2 is called the Bernoulli pressure

or the stagnation pressure. Similarly we can reexpress the vorticity

equation (4) (or by applying 𝑑 to (23)) as

𝜕
𝜕𝑡𝜔 = 𝑑𝜆. (24)

The lamb form in (23) corresponds to the convection term in the

Euler equations. Using 3D vector calculus, we have l = u × w =

u× (∇×u). Recalling that the momentum equation of Euler equation

is
𝜕
𝜕𝑡 u + u · ∇u = −∇𝑝 , we can plug in the vector identity u · ∇u =

1

2
∇|u|2−(∇×u)×u and u×(∇×u) = l to get 𝜕

𝜕𝑡 u−l = −∇(𝑝+
1

2
|u|2)

which is (23) in vector form.

Similarly, we can express (24) using 3D vector calculus and relate

𝑑𝜆 to the advection and the stretching term of the vorticity equation

in vector form. Since 𝜆 is a 1-form, taking its exterior derivative

corresponds to the curl of l. Expanding the curl we have ∇ × l =
∇ × (u × w) = u(∇ · w) − w(∇ · u) + (w · ∇)u − (u · ∇)w. Note

that u and w are divergence-free. Therefore, (24) can be written

as
𝜕
𝜕𝑡w = (w · ∇)u − (u · ∇)w. Rearranging terms, we obtain

𝐷w
𝐷𝑡

= (w · ∇)u.

3.3 Equations of Motion
We are ready to lay down the governing equations for fluids’ har-

monic components.

Let 𝑚 = dim(H1

C
(𝑀)) = dim(𝐻1

dR
(𝑀)) = dim(𝐻1 (𝑀)) be the

dimension of the 1st homology of the domain.
7
Let (𝜁 1, . . . , 𝜁𝑚), 𝜁 𝑗 ∈

H1

C
(𝑀), be a basis for the co-Dirichlet harmonic 1-forms. Note that

the dual space ofH1

C
(𝑀) is the space of Dirichlet harmonic (𝑛 − 1)-

forms

H𝑛−1

D
(𝑀) B

{
𝜉 ∈ Ω𝑛−1 (𝑀)

��𝑑𝜉 = 0, 𝛿𝜉 = 0, 𝑗∗𝜉 = 0

}
(25)

via the following dual pairing

H1

C
(𝑀) × H𝑛−1

D
(𝑀) → R, (𝜁 , 𝜉) ↦→

∫
𝑀
𝜁 ∧ 𝜉 . (26)

Determined uniquely by the basis (𝜁 1, . . . , 𝜁𝑚) forH1

C
(𝑀) is a set

of dual basis (𝜉1, . . . , 𝜉𝑚) forH𝑛−1

D
(𝑀) satisfying∫

𝑀
𝜁 𝑖 ∧ 𝜉 𝑗 = 𝛿𝑖

𝑗
=

{
1 𝑖 = 𝑗

0 𝑖 ≠ 𝑗,
for all 𝑖, 𝑗 = 1, . . . ,𝑚. (27)

7
The number𝑚 is also known as the 1st Betti number.
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With the above sets of bases, we express a velocity field 𝜂 ∈
V1

by a vorticity field 𝜔 ∈ im(𝑑) ⊂ Ω2 (𝑀) and an 𝑚-tuple c =

(𝑐1, . . . , 𝑐𝑚)⊺ ∈ R𝑚 as

𝜂 = 𝜂 (𝜔,c) = 𝑑+𝜔 +∑𝑚
𝑗=1

𝑐 𝑗𝜁
𝑗 . (28)

To extract the vorticity component, take the exterior derivative

𝜔 = 𝑑𝜂 as usual; to extract the coefficients c, apply the dual pairing

with the dual basis harmonic forms

𝑐𝑖 =
∫
𝑀
𝜂 ∧ 𝜉𝑖 , 𝑖 = 1, . . . ,𝑚. (29)

Theorem 1. 𝜂𝜔,c evolves under the Euler equations (2) if and only if
the vorticity 𝜔 and the coefficients c evolve according to{

𝜕
𝜕𝑡𝜔 = 𝑑𝜆, (30a)

𝑑
𝑑𝑡
𝑐𝑖 =

∫
𝑀
𝜆 ∧ 𝜉𝑖 , 𝑖 = 1, . . . ,𝑚, (30b)

where 𝜆 is the Lamb 1-form for 𝜂 (𝜔,c) .
One may take an orthonormal basis (𝜁 1, . . . , 𝜁𝑚) for H1

C
(𝑀) by

applying a Gram–Schmidt process or an economic QR decomposition
on any other basis. In that case, 𝜉𝑖 = ★𝜁 𝑖 . Let h𝑖 = (𝜁 𝑖 )♯ be the vector
counterparts of the harmonic forms. Then (30b) reads

𝑑
𝑑𝑡
𝑐𝑖 =

∫
𝑀
(l · h𝑖 ) 𝑑x =

{ ∫
𝑀
−𝑤Ju · h𝑖 𝑑𝐴 in 2D,∫

𝑀
det(u,w, h𝑖 ) 𝑑𝑉 in 3D.

(31)

Proof. Eq. (30a) is the same as the vorticity equation (4) or (24).

To obtain (30b), apply
𝑑
𝑑𝑡

to (29) to get
𝑑𝑐𝑖
𝑑𝑡

=
∫
𝑀

𝜕𝜂
𝜕𝑡 ∧ 𝜉𝑖

(23)

=
∫
𝑀
(𝜆 −

𝑑𝑝B) ∧ 𝜉𝑖 =
∫
𝑀
𝜆 ∧ 𝜉𝑖 . The last equality is due to

∫
𝑀
𝑑𝑝B ∧ 𝜉𝑖 =∮

𝜕𝑀
( 𝑗∗𝑝B)∧( 𝑗∗𝜉𝑖 )−

∫
𝑀
𝑝B𝑑𝜉𝑖 = 0 using the closedness andDirichlet

boundary condition of 𝜉𝑖 ∈ H𝑛−1

D
(𝑀) (cf. (25)). □

An earlier appearance of the time-evolution of the coefficients of

any spectral basis under the Euler equations was in the velocity-

based model reduction work by [Liu et al. 2015]. Our equation (31)

is a special case of equation (7) from [Liu et al. 2015], since a basis

for the harmonic component is a subset of a full spectral basis. We

show that (30b) (or (31) in vector calculus) is the essential element

for making vorticity-based solvers applicable to general domains,

including non-simply connected ones. In the following subsection,

by elucidating the theory behind cross-sectional flux, harmonic

streamlines, and vortex lines, we demonstrate that (30b) leads to a

conservation law with concrete physical and geometric meaning.

3.3.1 Practical Note.

Remark 1. In practice, to account for the missing dynamics of the
fluid’s harmonic component, it is sufficient to “charge” the coefficients
𝑐𝑖 ’s with the global aggregate sum of (l · h𝑖 ) across the domain, in
conjunction with any vorticity-streamfunction solver.

Remark 2. Note that when the harmonic basis is orthonormal, the
coefficients 𝑐1, . . . , 𝑐𝑚 do not directly represent the numeral values of
the fluxes on domain’s cross-sections as described in Section 3.1. In the
following Section 3.4.1, we describe which alternative basis to take in
order to let the coefficients represent the fluxes directly.

Remark 3 (Physical units in an orthonormal setup). Including
physical units, each 𝜁 𝑖 of an orthonormal harmonic basis forH1

C
(𝑀)

is of type 𝜁 𝑖 ∈ Ω1 (𝑀 ;Rm
−𝑛/2+1), and the dual basis is of type 𝜉𝑖 ∈

Ω𝑛−1 (𝑀 ;Rm
𝑛/2−1). That is, they are Rm

∓𝑛/2±1-valued after being
integrated over 1-chains and (𝑛 − 1)-chains respectively. The vector
counterpart h𝑖 = (𝜁 𝑖 )♯ has the unit of m

−𝑛/2, and the coefficient 𝑐𝑖 has
the unit of m

𝑛/2+1
s
−1.

3.4 Flux Dynamics
In the remainder of the section, we expand on (30b) and elucidate its

physical meaning by drawing a relation to cross-sectional fluxes. The

purpose is to shed light to new physically and geometrically intuitive

principles obeyed by incompressible fluids on multiply-connected

domains. These principles may facilitate productions of qualitatively

plausible fluid animations. Additional theoretic insights in terms of

Hamiltonian mechanics are discussed in Section 6.

3.4.1 When the 𝑐𝑖 ’s Become the Fluxes. As described in Section 3.1,

the cross-sectional fluxes directly reflect the harmonic component

of a velocity field. To make this relation more explicit, we pick a

basis (𝜁 1, . . . , 𝜁𝑚) forH1

C
, different from an orthonormal one used in

(31) and Section 3.3.1, so that the 𝑐𝑖 ’s become the physical flux on

cross-sections.

Let 𝑆1, . . . , 𝑆𝑚 ∈ 𝑍𝑛−1 (𝑀, 𝜕𝑀) be a set of representative cross-
sectional surfaces that forms a basis for 𝐻𝑛−1 (𝑀, 𝜕𝑀). Construct
closed curves𝐶1, . . . ,𝐶𝑚 ∈ 𝑍1 (𝑀) such that their signed intersection
products (denoted by [· ∩ ·]) are

[𝐶𝑖 ∩ 𝑆 𝑗 ] = 𝛿𝑖 𝑗 . (32)

Let 𝛿𝐶𝑖
∈ Ω𝑛−1 (𝑀) and 𝛿𝑆 𝑗

∈ Ω1 (𝑀) be the Dirac 𝛿 forms concen-

trated on these curves 𝐶𝑖 ’s and surfaces 𝑆 𝑗 ’s. Define

𝜁 𝑖 B (1 − 𝑑+𝑑) ★ 𝛿𝐶𝑖
∈ H1

C
(𝑀), (33a)

𝜉 𝑗 B ★(1 − 𝑑𝑑+)𝛿𝑆 𝑗
∈ H𝑛−1

D
(𝑀). (33b)

The field 𝜁𝑖 is the harmonic field “spread out from the concentrated

current 𝐶𝑖 ,” as the result of a stream-form part removal (1 − 𝑑+𝑑)
from the current. The field 𝜉 𝑗 is the harmonic field “pumped out

from the impulse at the cross-section 𝑆 𝑗 ,” as the result of the pressure

projection (1 − 𝑑𝑑+) (exact form removal) of the impulse.

Using vector calculus, 𝜁 𝑖 ∈ H1

C
(𝑀) and 𝜉 𝑗 ∈ H𝑛−1

D
(𝑀) can be

represented as harmonic vector fields Z𝑖 = 𝜁 𝑖 and X𝑗 = (★−1𝜉 𝑗 )♯
respectively. They are constructed as

Z𝑖 B (1 − curl
+

curl) (★𝛿𝐶𝑖
)♯, (34a)

X𝑗 B PressureProjection(𝛿♯
𝑆 𝑗
) . (34b)

Note that (𝑛 − 1)-forms 𝜉 𝑗 ’s geometrically represent families of

curves. These curves are the streamlines (integral curves) of the

associated vector fields X𝑗 ’s. Therefore:

Definition 5 (Harmonic stream). We call 𝜉 𝑗 in (33b) the harmonic

stream(lines) associated to a cross-sectional surface 𝑆 𝑗 ∈ 𝑍𝑛−1 (𝑀, 𝜕𝑀).
Proposition 9. For 𝜁𝑖 ’s and 𝜉 𝑗 ’s defined by (34), we have

∫
𝑀
𝜁 𝑖 ∧𝜉 𝑗 =

𝛿𝑖
𝑗
. Moreover, for each velocity 𝜂 ∈ V1 (u = 𝜂♯ ∈ 𝑉 ), the coefficients

𝑐 𝑗 ’s in (28) are the fluxes through the cross-sectional surfaces:

𝑐 𝑗 =

∫
𝑀

𝜂 ∧ 𝜉 𝑗 =
∫
𝑀

u · X𝑗 𝑑𝑉 = Flux(𝜂) (𝑆 𝑗 ). (35)

Proof. See Appendix E.9. □
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Remark 4. The harmonic stream 𝜉 𝑗 constructed from a cross-sectional
surface 𝑆 𝑗 by (33b) depends only on the equivalence class [𝑆 𝑗 ] ∈
𝐻𝑛−1 (𝑀, 𝜕𝑀), i.e. it is independent of the particular choice of repre-
sentative 𝑆 𝑗 ∈ [𝑆 𝑗 ]. In fact, 𝜉 𝑗 = Flux

⊺ ( [𝑆 𝑗 ]) where Flux⊺ is the
adjoint of the isomorphism Flux : H1

C
(𝑀) → 𝐻𝑛−1 (𝑀, 𝜕𝑀)∗ in (19):

H1

C
(𝑀) Flux //
OO

dual space
��

𝐻𝑛−1 (𝑀, 𝜕𝑀)∗OO

dual space

��
𝜉 𝑗 ∈ H𝑛−1

D
(𝑀) 𝐻𝑛−1 (𝑀, 𝜕𝑀) ∋[𝑆 𝑗 ]

Flux
⊺

oo

(36)

Remark 5. Once the basis 𝜉1, . . . , 𝜉𝑚 is constructed from a generator
basis 𝑆1, . . . , 𝑆𝑚 , one can construct the dual basis 𝜁 1, . . . , 𝜁𝑚 through a
simple QR-decomposition followed by a small matrix inversion without
the hassle of building𝐶1, . . . ,𝐶𝑚 . The detail of this process is described
in Section 4.1.2

Remark 6 (Physical units for the flux setup). Similar to Remark 3,
we discuss the physical units for the harmonic bases (34) and the coef-
ficients. Each harmonic stream 𝜉 𝑗 is of type 𝜉 𝑗 ∈ Ω𝑛−1 (𝑀 ;Rm

n−2),
and its vector counterpart (★𝜉 𝑗 )♯ has the unit of m

−1. The dual basis
form 𝜁 𝑖 is of type 𝜁 𝑖 ∈ Ω1 (𝑀 ;Rm

−n+2), whose vector counterpart
(𝜁 𝑖 )♯ has the unit of m

−n+1. The coefficients 𝑐 𝑗 has the unit of m
n
s
−1,

which is the unit of a total flux.

3.4.2 Fluxes and Linkings between Vortices and Harmonic Streamlines.
Just as in the general theory (30b), the flux (35) through the 𝑗-th

cross-sectional surface 𝑆 𝑗 has a rate of change given by

𝑑

𝑑𝑡
Flux(𝜂) (𝑆 𝑗 ) =

∫
𝑀

𝜆 ∧ 𝜉 𝑗 =
∫
𝑀

l · X𝑗 𝑑𝑉 . (37)

In the codimensional geometric picture of differential forms, recall

Section 3.2 that the Lamb 1-form 𝜆 is the collection of the “motion

blur” ribbon surfaces trailing behind the flowing vortex lines, and 𝜉 𝑗
is the set of harmonic streamlines. The integrated wedge product∫
𝑀
𝜆 ∧ 𝜉 𝑗 is the total number of signed intersections between the

motion blurs of vortex lines with the harmonic streamlines. In other

words,

∫
𝑀
𝜆 ∧ 𝜉 𝑗 is the rate at which vortex lines of 𝜔 cut through

the harmonic streamlines of 𝜉 𝑗 . Therefore,
∫
𝑀
𝜆 ∧ 𝜉 𝑗 is the rate of

change of the “linking number” between the flowing vortex lines

of 𝜔 and the static harmonic streamlines of 𝜉 𝑗 . We let this linking

number be denoted by Link(𝜔) (𝜉 𝑗 ) (whose subtle mathematical

definition for general manifolds will be discussed later). As such,∫
𝑀
𝜆 ∧ 𝜉 𝑗 = 𝑑

𝑑𝑡
Link(𝜔) (𝜉 𝑗 ).

Therefore, (37) is stating about a balancing relation between two

rates of changes, one about the flux through 𝑆 𝑗 , and the other about

Link(𝜔) (𝜉 𝑗 ). We conclude this discovery in the following theorem.

Theorem2. In an Euler fluid, for each cross-sectional surface 𝑆 𝑗 which
generates harmonic streamlines 𝜉 𝑗 , the difference between fluid’s flux
over 𝑆 𝑗 and the linking number between the vortex lines and harmonic
streamlines

Flux(𝜂) (𝑆 𝑗 ) − Link(𝜔) (𝜉 𝑗 ) (38)

is a constant of motion. (See Fig. 4.)

3.4.3 Linking in 2D Domains. In 2D, the vorticity 2-form 𝜔 is ge-

ometrically represented as a cloud of point vortices, instead of a

cloud of vortex lines. In that case, Link(𝜔) (𝜉 𝑗 ) is understood as

the total winding number of the harmonic streamlines about the

point vortices. Such linking/winding numbers can be defined for the

following special 2D domains.

Suppose𝑀 has the topology of a disk with𝑚 obstacles removed.

Then every cross-sectional curve 𝑆 𝑗 connects two of the (𝑚 + 1)-
boundary components. Moreover, the associated 𝜉 𝑗 ∈ H1

D
(𝑀) is

exact (Proposition 5): There exists harmonic functions 𝑈 𝑗 ∈ Ω0 (𝑀),
unique up to a constant, such that

𝜉 𝑗 = 𝑑𝑈 𝑗 . (39)

Geometrically, the harmonic streamlines of 𝜉 𝑗 are the level sets of

the scalar potential𝑈 𝑗 . Therefore, the winding number of these level

lines around the vortex points of 𝜔 admits an explicit formula:

Link(𝜔) (𝜉 𝑗 ) =
∫
𝑀

𝜔𝑈 𝑗 . (40)

Corollary 2. For an Euler fluid on a disk with 𝑚 obstacles, the
difference between the fluid flux over 𝑆 𝑗 and the quantity (40) is a
constant of motion.

Appendix D provides an analytical example for Corollary 2.

3.4.4 Linking in Euclidean Domains. When𝑀 ⊂ R𝑛 , every Dirichlet
closed forms, such as 𝜉 𝑗 , is exact 𝜉 𝑗 = 𝑑𝛼 𝑗 for some 𝛼 𝑗 ∈ Ω𝑛−2 (𝑀)
[Shonkwiler 2009; Zhao et al. 2019]. Fixing any representative po-

tential 𝛼 𝑗 , the linking number admits an explicit formula:

Link(𝜔) (𝜉 𝑗 ) =
∫
𝑀

𝜔 ∧ 𝛼 𝑗 . (41)

In 2D, 𝛼 𝑗 corresponds to a scalar function𝑈 𝑗 in a 2D Euclidean

domain, and the harmonic vector field X𝑗 , which is the vector

counterpart of 𝜉 𝑗 , satisfies X𝑗 = −J grad𝑈 𝑗 . In a 3D Euclidean

domain, 𝛼 𝑗 corresponds to a vector field a𝑗 with X𝑗 = curl a𝑗 . In
terms of these vector calculus counterparts, we have

Link(𝑤) (X𝑗 ) =
∫
𝑀

𝑤𝑈 𝑗 𝑑𝐴 in 2D, (42a)

Link(w) (X𝑗 ) =
∫
𝑀

w · a𝑗 𝑑𝑉 in 3D. (42b)

3.4.5 Linking in General Domains. For general manifolds𝑀 , defin-

ing the linking number is trickier. To make sense of Theorem 2

we define the linking number between 𝜔 and 𝜉 𝑗 only through its

variation with respect to 𝜔 . In that sense, Theorem 2 is understood

as that this linking variation always balances out with the variation

in the cross-sectional flux. For a detailed discussion on defining

linking, see Appendix C.

4 IMPLEMENTATION
In the previous section, we derived the new dynamical equations

for fluids’ harmonic parts (30b) and the underlying physical law

(Theorem 2). In Section 5, we use numerical examples to demon-

strate the effect of restoring such harmonic dynamics in vorticity-

streamfunction solvers. The results will show that (30b) is crucial

for reproducing realistic fluid dynamics in both 2D and 3D fluid
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Fig. 8. Left: vortices on a surface with genus = 2 simulated using our method.
Right: dye advected by the vortices.

simulations. In this section, we describe the implementation de-

tails for incorporating (30b) into existing state-of-the-art vorticity-

streamfunction solvers. Our algorithm is not limited to the particular

choice of solver we integrate with, but could be applied to different

advection schemes.

For 2D examples, we adopt the method of Functional Fluids [Azen-
cot et al. 2014] with a 4th-order Runge–Kutta time integration. This

method is an accurate vorticity-streamfunction solver that applies

to general triangulated surfaces with boundaries. The algorithm

is implemented in SideFX’s Houdini 19.5, and the source code is

available in the supplementary material.

For 3D examples, we employ Covector Fluids [Nabizadeh et al.

2022]. The original Covector Fluids solver is a velocity-based advection-

projection method which provides base-line ground truth references.

By replacing the pressure projection using a streamfunction solver

[Ando et al. 2015a], the Covector Fluids solver becomes equivalent

to a circulation-preserving vorticity-streamfunction method [Elcott

et al. 2007] with a higher order advection bootstrapped by Back-

and-Forth Error Correction and Compensation (BFECC) [Kim et al.

2005; Selle et al. 2008]. The algorithm is implemented in the C++

codebase provided by [Nabizadeh et al. 2022].

In each of these vorticity-streamfunction-based fluid simulators,

we present algorithms for updating harmonic components.

4.1 2D Implementation on Triangle Meshes
We employ the method of lines for the 2D fluid simulations. That is,

we spatially discretize the PDE (30), leaving a continuous-time ODE

which is subsequently integrated using the 4th-order Runge–Kutta

(RK4) method. The spatial discretization of the advective system on

a triangle mesh follows [Azencot et al. 2014].

Let 𝑀 = (P, E, F) be a triangle mesh. A discrete vector field

is a piecewise constant vector u = (uf ∈ 𝑇f𝑀)f∈F assigned on

the triangles. Each vector field u is associated with a directional

derivative operator [∇u] : R |P |
linear−−−−−→ R |P | that acts on a general

function 𝑓 = (𝑓p)p∈P ∈ R |P | by

( [∇u] 𝑓 )p B 1∑
f≻p𝐴f

∑
f≻p𝐴f ⟨uf , (grad 𝑓 )f⟩ (43)

where 𝐴f is the area of triangle f ∈ F, and (grad 𝑓 )f is the gradient
of the piecewise linear interpolated function 𝑓 in face f ∈ F.8 An
explicit formula for the gradient is given by

(grad 𝑓 )f = 1

2𝐴f

∑
p≺f (−Jfef,p) 𝑓p (44)

8
Another discrete function space that one may consider for taking gradients is the

Crouzeix–Raviart finite element [Poelke and Polthier 2016].We stick with the continuous

piecewise linear element following [Azencot et al. 2014].

where Jf is the 90
◦
counterclockwise rotation within the tangent

plane of the triangle f, and ef,p is the (unnormalized) edge vector

opposite to the point p across the triangle f.
In our system, each fluid state is given by a scalar vorticity field

𝑤 = (𝑤p ∈ R)p∈P and a tuple of coefficients c = (𝑐𝑖 )𝑚𝑖=1
∈ R𝑚 . With

a pre-computed 𝐿2
-orthonormal basis (h1, . . . , h𝑚) for (H1

C
(𝑀))♯

(Section 4.1.1) we build a velocity field

u(𝑤,c) B (𝑑+ (★𝑤))♯ +
∑𝑚
𝑖=1

𝑐𝑖h𝑖
= Velocity(𝑤, c; h) (45)

using the algorithm below:

Algorithm 1 Velocity(𝑤, c; h): Velocity reconstruction in 2D

Input: Vorticity field (𝑤p ∈ R)p∈P; harmonic coefficients (𝑐𝑖 ∈
R)𝑚

𝑖=1
; 𝐿2

-orthonormal harmonic basis (h𝑖,f ∈ 𝑇f𝑀)𝑚𝑖=1,f∈F.

1: ( ˆ𝜓p)p∈P ← Solve −Δ ˆ𝜓 = 𝑤 ,
ˆ𝜓 |𝜕𝑀 = 0; ⊲ Appendix B.1

2: (uf)f∈F ← (−Jf (grad
ˆ𝜓 )f)f∈F;

3: for each 𝑖 = 1, . . . ,𝑚 do
4: (uf)f∈F ← (uf + 𝑐𝑖h𝑖,f)f∈F;

Output: (uf)f∈F.

The reconstructed velocity (45) and the discrete directional deriv-

ative operator (43) allow us to express the right-hand sides of (30)

discretely. In particular, (30) is discretized into an ODE:{
𝑑
𝑑𝑡
(𝑤p) = −([∇u(𝑤,c) ]𝑤)p, p ∈ P, (46a)

𝑑
𝑑𝑡
(𝑐𝑖 ) =

∑
f∈F⟨lf , h𝑖,f⟩𝐴f , 𝑖 = 1, . . . ,𝑚. (46b)

Here, the Lamb vector field (lf ∈ 𝑇f𝑀)f∈F is given by

lf = −( 13
∑
p≺f 𝑤p) (Jfu(𝑤,c),f) . (47)

Our main algorithm for 2D fluid simulator is Runge–Kutta integra-

tion for (46):

Algorithm 2 Fluid Solver on a Triangle Mesh

1: h = (h𝑖,f ∈ 𝑇f𝑀)𝑚𝑖=1,f∈F ← An orthonormal basis forH1

C
(𝑀)♯;

⊲ Section 4.1.1

2: 𝑤 = (𝑤p ∈ R)p∈P ← Initialize vorticity;

3: c = (𝑐𝑖 ∈ R)𝑚𝑖=1
← Initialize harmonic coefficients;

4: 𝛥𝑡 > 0← Set time step;

5: for each frame do
6: [ 𝑤c ] ← RK4Step (EvalRHS, [ 𝑤c ], 𝛥𝑡) ;
7: export Velocity (𝑤, c, h);
8: function EvalRHS(𝑤 = (𝑤p ∈ R)p∈P, c = (𝑐𝑖 ∈ R)𝑚𝑖=1

)

9: u← Velocity (𝑤, c, h); ⊲ Alg. 1

10: l← Evaluate (47) using𝑤, u;
11: ¤𝑤 = ( ¤𝑤p)p∈P ← Evaluate RHS of (46a) using𝑤 and u;
12: ¤c = ( ¤𝑐𝑖 )𝑚𝑖=1

← Evaluate RHS of (46b) using l and h;
13: return ( ¤𝑤, ¤c);
14: function RK4Step(𝐹 ∈ (T→ T), 𝑥 ∈ T, 𝛥𝑡 ∈ R)
15: 𝑘1 ← 𝐹 (𝑥); 𝑘2 ← 𝐹 (𝑥 + 𝛥𝑡/2 · 𝑘1);
16: 𝑘3 ← 𝐹 (𝑥 + 𝛥𝑡/2 · 𝑘2); 𝑘4 ← 𝐹 (𝑥 + 𝛥𝑡 · 𝑘3);
17: return 𝑥 + 𝛥𝑡/6 · (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4);
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4.1.1 Orthonormal Basis forH1

C
(𝑀). We generate a set of orthonor-

mal basis forH1

C
(𝑀) by constructing a basis based on (34) followed

by a QR orthonormalization. On a triangle mesh, we first construct a

basis (𝑆1, . . . , 𝑆𝑚) for 𝐻𝑛−1 (𝑀, 𝜕𝑀). Each 𝑆𝑖 is a chain of dual edges

(triangle strip) that is either closed or has both ends connected to 𝜕𝑀 .

These relative homology generators 𝑆 𝑗 are found using a tree-cotree

algorithm [Eppstein 2003; Erickson and Whittlesey 2005; Dłotko

2012].

Next, we build the discrete
ˆ𝜉 𝑗 = ★−1𝜉 𝑗 ∈ H1

C
(𝑀) where 𝜉 𝑗 ∈

H𝑛−1

D
(𝑀) describes the harmonic stream described in Definition 5.

For this process, we employ discrete exterior calculus (DEC) [Hirani

2003]. For each 𝑆 𝑗 , build a discrete primal 1-form that represents the

impulse 𝛿𝑆 𝑗
. That is, for a primal edge e ∈ E crossed by 𝑆 𝑗 we set

(𝛿𝑆 𝑗
)e to be ±1. The sign is chosen so that d1𝛿𝑆 𝑗

= 0, where d1 is

the discrete exterior derivative operator (co-boundary operator) on

1-cochains. Each harmonic form
ˆ𝜉 𝑗 is built by the pressure projection

(1 − 𝑑𝑑+)𝛿𝑆 𝑗
in the DEC sense.

Next, each
ˆ𝜉 𝑗 is interpolated into a piecewise constant vector

field (X̂𝑗 ∈ 𝑇f𝑀)f∈F using Whitney interpolation [Bossavit 1998].

Now, we 𝐿2
-orthonormalize X̂1, . . . , X̂𝑚 with respect to the inner

product structure ⎷u, v⌄ =
∑
f∈F⟨uf , vf⟩𝐴f . For each 𝑗 = 1, . . . ,𝑚,

pre-multiply the area factor X̃𝑗,f =
√
𝐴fX̂𝑗,f , apply a QR factorization

| |
˜h1 · · · ˜h𝑚
| |

︸              ︷︷              ︸
Q

2|F|×𝑚

R𝑚×𝑚 =


| |
X̃1 · · · X̃𝑚

| |

 . (48)

Finally, we obtain an orthonormal basis (h1, . . . , h𝑚) forH1

C
(𝑀) by

h𝑗,f = 1√
𝐴f

˜h𝑗,f .
Alternatively, one can also use a randomized algorithm to obtain

a set of orthonormal harmonic basis as explained in Section 4.2.1.

4.1.2 Harmonic Stream Basis for Flux Coefficients. While an or-

thonormal basis (h1, . . . , h𝑚) forH1

C
(𝑀) is convenient in computa-

tion, its associated coefficients do not have direct physical meaning.

Here, analogous to Section 3.4.1 we describe an alternative basis

for H1

C
(𝑀) so that 𝑐1, . . . , 𝑐𝑚 represent the total fluxes through

𝑆1, . . . , 𝑆𝑚 . Continuing (48), invert R and reassemble the orthogonal

basis
˜h1, . . . , ˜h𝑚 into

| |
Z̃1 · · · Z̃𝑚
| |

 =


| |

˜h1 · · · ˜h𝑚
| |

 R−1

𝑚×𝑚 . (49)

Define

(Z𝑖,f)f∈F B 1√
𝐴f
Z̃𝑖 . (50)

The bases (Z𝑖 ) and (X̂𝑗 ) are the discrete analogs of (𝜁 𝑖 )♯ and

(★−1𝜉 𝑗 )♯ defined in (34) respectively. Under these bases, one re-

places h by Z in the velocity reconstruction (45) and Alg. 1; and one

replaces h by X̂ in the c updates (46b). By doing so, the dynamics

remains the same, but the coefficients 𝑐1, . . . , 𝑐𝑚 now represent the

physical fluxes on the cross sections 𝑆1, . . . , 𝑆𝑚 .

4.2 3D Implementation on Staggered Grids
For 3D numerical examples, we integrate our algorithm to the code-

base of Covector Fluids [Nabizadeh et al. 2022] for its equivalence

to a circulation-preserving vorticity method. In particular, we re-

place the pressure projection step with a streamfunction solver

applied to the vorticity. The discretization uses the standard MAC

grid 𝑀 = (V, E, F,C) to store the variables. Similar to many other

grid-based streamfunction solvers [Ando et al. 2015a; Chang et al.

2022], we store the velocity on grid faces, and store vorticity and

streamfunction on grid edges. We explain solving the streamfunction

Poisson problem in details in Appendix B. So far, this is a classical

3D vorticity–streamfunction solver that does not have the dynamics

of the harmonic components.

In our method, we incorporate (31). We store our harmonic basis

as𝑚 vector fields on the MAC grid faces, similar to the velocity fields.

To evaluate the right-hand side

∫
𝑀

det(u,w, h𝑖 ) 𝑑𝑉 of (31), we inter-

polate the velocity (𝑢f)f∈F, vorticity (𝑤e)e∈E, and harmonic basis

(ℎ𝑖,f)f∈F respectively into vector fields (uc)c∈C, (wc)c∈C, (h𝑖,c)c∈C
that sit on the cell centers for easy local computations. With this

discretization, we include the dynamics (31) by adding the following

step in the main solver:

𝑐𝑖 ← 𝑐𝑖 + 𝛥𝑡
∑
c∈C det(uc,wc, h𝑖,c)𝑉c, (51)

where 𝑉c is the cell volume. The harmonic coefficients are also used

to reconstruct velocity after the streamfunction solver step. We

summarize our overall procedure in Alg. 3.

Algorithm 3 3D Stream function solver with harmonic components

1: h1, . . . , h𝑚 ← Generate an orthonormal basis forH1

C
(𝑀, 𝜕𝑀)♯ ;

⊲ Section 4.2.1

2: 𝑐1, . . . , 𝑐𝑚 ← Initialize harmonic coefficients;

3: w← Initialize vorticity;

4: 𝛥𝑡 ← Set time step;

5: for each frame do
6: 𝝍 ← StreamFunctionPoissonSolve(w);
7: v← Curl(𝝍);
8: v← v +∑

𝑐𝑖h𝑖 ;
9: w← VorticityAdvection(w; v, 𝛥𝑡);
10: 𝝀 ← Cross(v, curl v) ⊲ (24)

11: for each 𝑖 = 1 · · ·𝑚 do
12: ¤𝑐𝑖 ← InnerProduct(h𝑖 ,𝝀) ⊲ (31)

13: 𝑐𝑖 ← 𝑐𝑖 + 𝛥𝑡 ¤𝑐𝑖 ; ⊲ (51)

4.2.1 Generate Harmonic Basis in 3D. Methods for computing har-

monic fields in a 3D domain are discussed in [Zhao et al. 2019].

In our case, we calculate an orthonormal basis for the harmonic

components through a randomized algorithm. We generate𝑚 ran-

dom vector fields where𝑚 is the dimension ofH1

C
(𝑀). We store

these vector fields as flux on the faces of the staggered grid. We

subtract the exact and co-exact components of these vector fields by

applying (1 − 𝑑𝑑+ − 𝑑+𝑑), i.e. by taking the difference between a

standard pressure solve and a streamfunction solve. This procedure

gives us𝑚 harmonic vector fields. These harmonic vector fields are
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almost surely linearly independent. We then perform a QR decom-

position (e.g. a Gram–Schmidt or a Householder process) to obtain

an orthonormal basis for the harmonic components. See Alg. 4.

Algorithm 4 Generate an orthonormal basis forH1

C
(𝑀, 𝜕𝑀)

1: v1, . . . , v𝑚 ← Generate𝑚 random vector fields.

2: for each 𝑖 = 1, . . . ,𝑚 do
3:

˜h𝑖 ← PressureProject(v𝑖 ) − StreamVelocity(curl v𝑖 ).
4: h𝑖 ←

√
𝑉 ˜h𝑖 ; ⊲ 𝑉 = voxel volume.

5: Construct H =

[
| |
h1 · · · h𝑚
| |

]
∈ R3(#voxels)×𝑚 .

6: Q ∈ R3(#voxels)×𝑚,R ∈ R𝑚×𝑚 ← QR-Decomposition(H).
7: for each 𝑖 = 1, . . . ,𝑚 do
8: h𝑖 ← 1√

𝑉
(𝑖-th column of Q).

Output: h1, . . . , h𝑚 .

5 NUMERICAL EXAMPLES
In this section, we demonstrate the results from our incorporation of

the dynamical harmonic components into vorticity-streamfunction

fluid solvers for 2D surfaces (Alg. 2) and 3D scenes (Alg. 3).

5.1 2D Oscillating Fluxes with Closed Lamb Form
We design a setup so that the vortex dynamics (30a) vanish while

a nontrivial evolution of the harmonic part (30b) is present. With

this design, we single out the effect of the new equation (30b). We

obtain the solution both numerically and analytically. In particular,

the results demonstrate the necessity of (30b) for realistic fluid

animation in contrast to previous methods.

5.1.1 Design Rationale. How do we keep the vorticity equation

steady while keeping the harmonic part dynamic? A classically

known result in fluid mechanics directly following from (23) is that

the flow is steady (
𝜕𝜂
𝜕𝑡 = 0) if and only if the Lamb form is the

gradient of the Bernoulli pressure 𝜆 = 𝑑𝑝B. Now, what if we relax the
condition of 𝜆 ∈ im(𝑑) to just 𝜆 ∈ ker(𝑑)? The closedness of 𝜆 will

still ensure that the vorticity is steady (
𝜕𝜔
𝜕𝑡 = 0) using (30a). But such

a non-exact closed 𝜆, which contains harmonic components, can

yield nontrivial dynamics in (30b), making the overall flow unsteady.

In 2D, a simple way to obtain a closed 𝜆 is to set vorticity constant,

say 𝜔 = ★1. Then 𝜆 = −𝑖u𝜔 = −★ 𝜂, which is closed since 𝛿𝜂 = 0.

Next, we need to make sure 𝜆 is not exact. Observe that if the

domain is the result of the removal of a few obstacles from a simply-

connected disk, every 𝜆 = −★𝜂 is exact (Proposition 5). Therefore,

the simplest non-trivial example is a surface with nonzero genus.

The surface must also have at least one boundary component since

a closed surface must have zero total vorticity.

Catmull–Clark
subdivision

1 m

2 m

Fig. 9. A surface with genus = 1 and one boundary component.

5.1.2 Setup. Let the domain𝑀 be a surface with the topology of a

torus with one disk removed. Fig. 9 illustrates the construction of

the surface.

The domain has𝑚 = dim(H1

C
(𝑀)) = 2. Set 𝜔 = 𝑤 ★ 1, where

𝑤 ∈ R(1/s) is a constant. Let (𝜁 1, 𝜁 2) be an orthonormal basis for

H1

C
(𝑀). Its dual basis (𝜉1, 𝜉2) forH1

D
(𝑀) is given by 𝜉𝑖 = ★𝜁 𝑖 .

The initial flow has nonzero harmonic components (𝑐1, 𝑐2)⊺ |𝑡=0 ≠

(0, 0)⊺ . The velocity field generally takes the following form:

= 𝑤 + 𝑐1 + 𝑐2

𝜂♯ (𝑑+ (★1) )♯ (𝜁 1 )♯ (𝜁 2 )♯

(52)
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Fig. 10. Evolution of the coefficients of the harmonic components for the
setup of Section 5.1.4, simulated by our method described in Section 4.1.

Method
with fixed
harmonic
part

Our
method

Initial texture

𝑡 = 30 s 𝑡 = 60 s 𝑡 = 92 s

Fig. 11. Surface flows computed by the previous method [Azencot et al. 2014]
and our method. The evolution of the harmonic component incorporated by
our method is crucial for realistic flow animation (see video 02:26).

5.1.3 Analytic Solution. For constant vorticity 𝜔 = 𝑤 ★ 1, the Lamb

form is 𝜆 = −𝑤 ★𝜂 = −𝑤 ★ (𝑑+ (★1) + 𝑐1𝜁
1 + 𝑐2𝜁

2) = 𝑤 (𝑑 ˆ𝜓 − 𝑐1𝜉1 −
𝑐2𝜉2), where ˆ𝜓 = ★𝜓 is the streamfunction. Since 𝜆 is closed, by

(30a) the vorticity stays static. The only dynamics left is (30b), which

now reads

𝑑𝑐1

𝑑𝑡
= 𝑤

∫
(𝑑 ˆ𝜓 − 𝑐1𝜉1 − 𝑐2𝜉2) ∧ 𝜉1

𝑗∗ ˆ𝜓=0

= 𝑐2𝑤
∫
𝑀
𝜉1 ∧ 𝜉2 (53)

and similarly

𝑑𝑐2

𝑑𝑡
= −𝑐1𝑤

∫
𝑀
𝜉1 ∧ 𝜉2 . (54)

That is, (𝑐1, 𝑐2)⊺ evolves in a simple harmonic oscillation

𝑑
𝑑𝑡

[
𝑐1

𝑐2

]
= 𝜇𝑤

[
0 1

−1 0

] [
𝑐1

𝑐2

]
, 𝜇 B

∫
𝑀
𝜉1 ∧ 𝜉2 =

∫
𝑀
𝜁1 ∧ 𝜁2, (55)

which has an explicit solution[
𝑐1 (𝑡)
𝑐2 (𝑡)

]
=

[
cos(𝜇𝑤𝑡) sin(𝜇𝑤𝑡)
− sin(𝜇𝑤𝑡) cos(𝜇𝑤𝑡)

] [
𝑐1 (0)
𝑐2 (0)

]
. (56)
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Time (s)

Method with fixed
harmonic part

Our method

0 20 40 60 80 100

Fig. 12. The time-evolution (from left to right) of a vortex pair moving through a fluid domain with two small hexagonal obstacles, simulated by [Azencot et al.
2014] (top) and our method (bottom) (see video 01:00).

Fig. 13. A harmonic basis for a hexagonal disk with 2 hexagonal holes
removed.

The frequency 𝜇𝑤 of the oscillation is proportional to the background

vorticity𝑤 ∈ R(1/s) and a dimensionless number 𝜇 depending on

the geometry. Note that the construction of 𝜇 relies only on the★ on

1-forms. Hence 𝜇 depends only on the conformal type of the surface
[Soliman et al. 2021].

5.1.4 Numerical Results. We apply our fluid solver (Alg. 2) to the

configuration of Section 5.1.2. We set𝑤 = 2 s
−1

, 𝑐1 (0) = 0.5 m
2/s and

𝑐2 (0) = 0 m
2/s. The solver is set with time discretization 𝛥𝑡 = 0.1 s.

The result is compared against the previous vorticity-streamfunction

method on surfaces [Azencot et al. 2014], which is our algorithm

without (30b).

Fig. 10 shows the numerical values of 𝑐1 and 𝑐2 over time. In par-

ticular, they agree with the analytical solution 𝑐1 (𝑡) = 0.5 cos(𝜇𝑤𝑡),
𝑐2 (𝑡) = −0.5 sin(𝜇𝑤𝑡) (cf. (56)). Previousmethods that keep (𝑐1, 𝑐2) =
(0.5, 0) constant over time would lead to a vastly different flow both

quantitatively and qualitatively. In Fig. 11, we advect colors to com-

pare the resulting flow map of the previous method [Azencot et al.

2014] and ours. In [Azencot et al. 2014] the inertia is not correctly

transferred, creating an unnatural laminar texture that is not turned

by the background vorticity. The problem is solved in our method

which incorporates the evolution of the harmonic components.

5.2 2D Vortex Pair Between Obstacles
Let the domain𝑀 be a flat hexagonal disk with two hexagonal holes

removed, similar to an ocean basin with two islands. The dimension

of its 1st relative homology is two, and therefore the dimension of

the harmonic basis is two, as illustrated in Fig. 13.
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Fig. 14. Circulation around a boundary component in Fig. 12.
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Fig. 15. Flux, Link, and Flux − Link for a cross-section 𝑆 in Fig. 12.

We set a pair of vortices with opposite values as shown in Fig. 12

at 𝑡 = 0 s. In principle, we expect the traveling vortex pair to pass

through the space between the islands. However, using the method

[Azencot et al. 2014] with a fixed harmonic part, the two vortices

do not pass through. Instead, they turn around and go back in the

opposite direction when they approach the islands. This unphysical

behavior is due to a vanishing total flux along the curve connect-

ing the two holes maintained by the fixed harmonic part. Using

our method which includes (30b), the vortices pass through as ex-

pected. Fig. 12 shows the dynamics of the vortices over time for

both methods.

In addition to inspecting the vortex motion, we also determine

the correctness of the competing methods quantitatively. In Fig. 14
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we measure the circulations around one of the islands over time for

both methods. Since the flow is always tangential to the boundary,

the boundary curve of the island that flows with the fluid will

stay as the same boundary curve. In particular, Kelvin’s circulation

theorem or island rule [Godfrey 1989; Pedlosky et al. 1997] applies.

The circulation along the island boundary should be conserved. As

shown in Fig. 14, our method better conserves the circulation, while

the method with a fixed harmonic part violates this conservation

law. In Fig. 15, we consider a cross-section 𝑆 , and measure the

corresponding Flux, Link, and Flux − Link. Using our method,

Flux − Link is a conserved quantity. In contrast, using the method

with a fixed harmonic part, the flux is always zero, and Flux − Link
is not conserved.

5.3 3D Examples on Non-simply-connected Domains
Similar to the 2D examples, when one does not incorporate the

dynamics of harmonic components into vorticity-streamfunction

methods, unphysical behaviors occur in a domain with non-trivial

topology. We set up three experiments by introducing different

obstacles (fan, torus, and pillars) into a closed box domain, making

the domain non-simply connected (see Fig. 16).

In Experiment 1 (Fan) we place a torus-shaped fan in the domain

which raises the dimension of its 1st cohomology to one. Experi-

ment 2 (Torus Rock) is staged with a torus-shaped rock submerged

in an aquarium. Similar to the previous setup, the 1st cohomol-

ogy’s dimension is one. Experiment 3 (Pillars Rock) is also set in an

aquarium, but the obstacles are two pillars. Since the pillars touch

both the top and the bottom of the boxed domain, the dimension

of the 1st cohomology is two. We illustrate the harmonic basis for

Experiment 1 (Fan) and Experiment 3 (Pillars Rock) in Fig. 17.

We run our experiments on uniform staggered grids with a voxel

resolution of 150 × 75 × 75 in a box size of 10 × 5 × 5 m
3
. The

timestep duration is set to 1/24 seconds with two substeps per frame.

A vortex ring of radius 0.4 m is initialized to face in the positive

𝑥-direction with strength 1.6 m
2/s. As mentioned in Section 4, for 3D

flows, we use Covector Fluids solver [Nabizadeh et al. 2022] as our

velocity-based method reference (right). We replace the pressure

projection step with a streamfunction Poisson solver as the results

which represent classical methods with fixed harmonic parts (left).

Our method includes the evolution of harmonic parts (30b) (middle).

Fig. 1, and Fig. 16 demonstrate the results of the three experiments

detailed above. A significant amount of vorticity is trapped by the ob-

stacles when one uses a traditional method that fixes harmonic parts

(left). This behavior does not match the results in the velocity-based

method reference (right). In particular, in the result of Experiment 1

(Fan) computed by the method fixing harmonic parts (left), only a

small portion of the vortex passes through the fan while the majority

of the vortex moves in the opposite direction to compensate for

a vanishing total flux across the fan. Using our method (middle),

the vortex passes through the obstacles with an overall dynamical

behavior similar to the velocity-based method reference (see video).

In conclusion, the numerical examples demonstrate that a classical

vorticity-streamfunction solver can generate incorrect flow patterns.

Our method for including the dynamics of harmonic parts solves

this problem.

6 HAMILTONIAN FORMULATION
One of the highlights in the theory of Hamiltonian Fluid Mechan-

ics is interpreting the vorticity equation (4) or (30a) as a reduced
infinite-dimensional Hamiltonian system in classical mechanics.

In this final discussion section, we extend the Hamiltonian descrip-
tion to include our new equation (30b) of the time-evolution of the
harmonic coefficients. Readers can find introductions to the most

common Hamiltonian formulation for fluid dynamics in [Salmon

1988] using elementary continuum mechanics, [Morrison 1998]

using non-canonical transformations, or [Arnold 1966; Marsden and

Weinstein 1983; Arnold and Khesin 1998] using group theory.

Background. The setup for a Hamiltonian formulation involves

several steps. One first establishes a set of variables that describe the

state of the physical system. The space of all possible states is called

the phase spaceM. One then describes a symplectic structure. A

symplectic structure is a non-degenerate closed 2-form 𝜎 ∈ Ω2 (M)
that encodes the interrelation among the variables such as position-

momentum paring. When the phase space has a symplectic structure,

it is called a symplectic manifold. In many weaker cases including

the case of fluids, the phase spaceM is merely foliated into many

symplectic submanifolds called symplectic leaves. Such a phase space

is called a non-canonical space or a Poisson manifold [Weinstein

1998]. Finally, one describes the final dynamical system by defining a

Hamiltonian function 𝐻 : M → R, which expresses the total energy

of the system for each state. The equation of motion (called the

Hamiltonian flow) is derived as the symplectic gradient flow9
of the

Hamiltonian function 𝐻 . In the case whereM is only a Poisson

manifold instead of a single symplectic manifold, the Hamiltonian

flow just flows within each symplectic leaf. Any function𝐶 : M → R
defined on the phase space (such as a physical measurement) is called

a Casimir if 𝐶 is constant on each symplectic leaf; i.e. symplectic

leaves are contained in the level sets of 𝐶 . As a direct consequence,

every Hamiltonian flow (of any Hamiltonian function) is a dynamical

system where the measurement 𝐶 is a constant of motion.

The above setup is typically easy to describe for particle systems

and their continuum limits, as one may define the positions and

momenta as the obvious ones for each particle. The non-trivial

aspect about Hamiltonian Fluid Mechanics is after the so-called

reduction by sorting out the particle-relabeling symmetry [Salmon

1988]. After the reduction, the position and momentum of each

individual particle are no-longer parts of the coordinates of the phase

space. Instead, what naturally emerges is that the phase space for

incompressible fluids is the quotient spaceM = Ω1 (𝑀)/𝑑Ω0 (𝑀) of
velocity 1-forms modulo an exact form (𝑑 of Lagrangian pressure)

[Arnold and Khesin 1998, Theorem I.7.5]. In fact, this phase space is

a Poisson manifold with symplectic leaves given by the orbits of Lie

transportations of velocity 1-forms under any volume-preserving

flow maps (i.e. the pullback of velocity 1-forms under the inverse of

the flow maps). In particular, Kelvin’s circulation theorem can be

thought of as a Casimir-typed conservation law. A more concrete

example of Casimir in a 3D incompressible fluid is the helicity∫
𝑀
𝜂 ∧ 𝜔 that measures the self-linking number of vortex lines.

9
Symplectic gradient flow is defined identically to gradient descent flow with inner

product structure ⟨·, ·⟩ replaced by the symplectic form 𝜎 ( ·, · ) .
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(a) Method with fixed harmonic part (b) Our method (c) Velocity-based method

Fig. 16. Visualizations of vorticities from Experiment 1 (Fan), Experiment 2 (Torus Rock), and Experiment 3 (Pillars Rock). Note that using the method with a
fixed harmonic part, the vorticity appears to be trapped by the obstacles, especially in Experiment 1 (Fan). Our method resolves this issue and produces visually
similar results to ground truth (velocity-based advection-projection scheme).

Fig. 17. Harmonic bases for Experiment 1 (Fan) in the left figure, and
Experiment 3 (Pillars Rock) in the middle and right figures. Note that our
domain is inside a closed box, but we only include the bottom side of the
box to better visualize the harmonic fields inside.

To make the quotient spaceM = Ω1 (𝑀)/𝑑Ω0 (𝑀) less abstract, a
common practice is to describeM = im(𝑑1) ⊂ Ω2 (𝑀) as the space
of vorticity fields (by assuming there is no cohomology component)

[Marsden and Weinstein 1983, §4]. Such a treatment is attractive,

since vorticity has a concrete physical meaning, and the Hamiltonian

flow (𝐻 = total kinetic energy) on the vorticity variable directly

yields the familiar vorticity equation (4) or (30a). The drawback is of

course it does not describe fluids on non-simply-connected domains.

Our Modification. Similar to our Theorem 1, the fluid state is

described by both vorticity 𝜔 ∈ im(𝑑1) ⊂ Ω2 (𝑀) and coefficients of

harmonic components c = (𝑐𝑖 )𝑚𝑖=1
∈ R𝑚 . Importantly, as described

in (19) and Section 3.4.1, the coefficients c have the concrete physical
meaning of flux through cross-sections 𝑆1, . . . , 𝑆𝑚 of the domain.

Recall that each cross section 𝑆𝑖 is associated with a harmonic field

𝜉𝑖 defined in (33b). Our phase spaceM is given by the coordinate of

vorticity data and the flux data:

M B im(𝑑1) × R𝑚 =
{
(𝜔, c)

��𝜔 ∈ im(𝑑1), c ∈ R𝑚
}
. (57)

This phase space is a Poisson manifold. We describe the Poisson

structure by defining its symplectic foliation as follows. A tangent

vector (�̊�, c̊) | (𝜔,c) ∈ 𝑇(𝜔,c)M at state (𝜔, c) ∈ M is tangent to the
symplectic leaf if it takes the following form

�̊� = −𝑑𝑖𝑋𝜔, 𝑐𝑖 =
∫
𝑀
(−𝑖𝑋𝜔) ∧ 𝜉𝑖 (58)

for some divergence-free vector field𝑋 ∈ Γ(𝑇𝑀). One can check that
the distribution of tangent subspaces (58) is integrable

10
and hence

form a foliation. We define the symplectic form 𝜎 on the symplectic

10
A simple way to verify the integrability of the distribution (58) is to realize that

the reconstructed velocity 𝜂 (𝜔,c) B 𝑑+𝜔 + ∑
𝑖 𝑐𝑖𝜁

𝑖
has the corresponding motion
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leaf: For every two tangent vectors (�̊�, c̊) = (−𝑑𝑖𝑋𝜔,
∫
𝑀
(−𝑖𝑋𝜔)∧𝝃 ),

( ¤𝜔, ¤c) = (−𝑑𝑖𝑌𝜔,
∫
𝑀
(−𝑖𝑌𝜔) ∧ 𝝃 ) tangent to the leaf (where 𝑋,𝑌 ∈

Γ(𝑇𝑀) are arbitrary divergence-free vector fields),

𝜎 (𝜔,c)
(
(�̊�, c̊), ( ¤𝜔, ¤c)

)
B

∫
𝑀
𝜔 (𝑋,𝑌 ) ★ 1. (59)

This symplectic form is the same as the one defined in the literature

[Marsden and Weinstein 1983] but now lifted to a larger space (57).

Note that the definition (58) ensures that Flux(𝜂) (𝑆𝑖 ) −Link(𝜔) (𝜉𝑖 )
is always invariant under any variation along a symplectic leaf.

We elaborate on the variation of Link in Appendix C. In particular,

Flux(𝜂) (𝑆𝑖 ) − Link(𝜔) (𝜉𝑖 ) is a Casimir for each 𝑖 = 1, . . . ,𝑚 (cf.
Theorem 2). Finally, one may verify that our full equation (30) is the

Hamiltonian flow of the total kinetic energy

𝐻 (𝜔, c) B
∫
𝑀

1

2

��𝑑+𝜔 +∑𝑚
𝑖=1

𝑐𝑖𝜁
𝑖
��2 ★ 1. (60)

In summary, the above equations complete the vorticity-based Hamil-

tonian description of incompressible fluid dynamics in domains

with general topology. This mathematical framework may serve as

a foundation for future research in mathematical fluid mechanics.

7 CONCLUSION
In this paper, we tackle a long-existing problem in the vorticity-

streamfunction formulation of incompressible Euler fluids on non-

simply-connected domains. We demonstrate that the dynamics for

the harmonic (cohomology) components of incompressible Euler

fluids can be described by (30b) (Theorem 1). This have been over-

looked by previous vorticity-streamfunction solvers. We give a

simple and practical algorithm in Section 4 that easily incorporates

such dynamics into previous vorticity-streamfunction solvers.

Our numerical examples (Section 5) demonstrate that it is neces-

sary to include the additional equations in a vortex solver to avoid

unphysical artifacts in fluid animations.

The proposed algorithm for 2D surface simulation (Alg. 2) is

particularly significant because while vorticity-based methods (in-

volving only scalar advections) are much more straightforward to

compute on a 2D surface domain compared to a velocity-based solver

(involving covariant vector advection), previous vorticity-based sur-

face fluid solvers do not include the dynamics of the harmonic

components. Our Alg. 2 is the first vortex solver that is consistent

with the Euler equations on surfaces with arbitrary topology.

We also find a new physical conservation law associated with the

new evolution of harmonic components (Theorem 2). We describe

our new equation as a Hamiltonian system on the state space coor-

dinated by the vorticity and the cross-sectional fluxes (Section 6).

Compared to previous editions of Hamiltonian formulation for in-

compressible Euler flows, the new framework does not omit the

cohomology and each variable is a physically meaningful measure-

ment. The mathematical investigations have also led us to discover

new Casimir invariants as well as interesting analytic flows, e.g. the
example presented in Section 5.1. It would be exciting to explore if

this new conserved quantity that we discovered could serve as the

foundation for new algorithms in the future.

This paper leaves a few open questions that are beyond our cur-

rent investigation. We only work on inviscid Euler fluids on a fixed

of 𝜂 = −L𝑋 𝜂 modulo im(𝑑0 ) . Hence, (58) is just the tangent vectors to the known

symplectic leaves in Ω1 (𝑀 )/𝑑Ω0 (𝑀 ) . In particular, the distribution (58) is integrable.

oriented Riemannian manifold. In particular, we do not consider

moving obstacles or that the domain is an evolving surface. Expand-

ing our analysis to moving domains can yield new perspectives to

the studies of underwater swimmers and solid-vortex interactions

[Vankerschaver et al. 2009; Weißmann 2014]. Lastly, what is the
effect of viscosity? What if the domain has changing topology? What if
the domain is non-orientable? We expect exciting research answering

these and related questions in the near future.
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A PRELIMINARIES

A.1 Differential Forms
Let𝑀 be an𝑛-dimensional Riemannianmanifold. The space of vector

fields is denoted by Γ(𝑇𝑀), and the space of differential 𝑘-forms,

0 ≤ 𝑘 ≤ 𝑛, is denoted by Ω𝑘 (𝑀).
A differential𝑘-form𝛼 ∈ Ω𝑘 (𝑀) is a formal object to-be-integrated

over an oriented 𝑘-dimensional test surface 𝑆 . This evaluation

method is denoted by

∫
𝑆
𝛼 . For example, in 3D, a 3-form describes

a density field or a measure that awaits being integrated over a

volumetric region. A 2-form describes a flux that is to be evaluated

over an oriented surface. A 1-form is to be line-integrated into

circulations, and 0-forms are synonyms for scalar functions that are

to be evaluated over points.

A.1.1 Forms are Distributions of Codimensional Geometries. Dif-
ferential 𝑘-forms should not be confused with vector fields in their

visual representations. Geometrically, a vector field v is an assign-

ment of an infinitesimal “arrow” v𝑝 ∈ 𝑇𝑝𝑀 at every point 𝑝 ∈ 𝑀 ,

whose directions and magnitudes depict an instantaneous flow veloc-

ity within the domain𝑀 . A 𝑘-form 𝛼 ∈ Ω𝑘 (𝑀), on the other hand,

is a distribution of (𝑛 − 𝑘)-dimensional (codimension-𝑘) oriented

planes over𝑀 . For example, in 3D, a 3-form is illustrated as a point

cloud, a 2-form is a line segment cloud, a 1-form is a plane field, and a

0-form is a superposition of sublevel sets of the corresponding scalar

function. The orientations and densities of the codimension-𝑘 plane

cloud are given so that the integration

∫
𝑆
𝛼 over a test 𝑘-surface 𝑆 is

the total signed intersection between 𝑆 and the codimensional-𝑘

plane cloud.
11

0-form 1-form 2-form 3-form

A.1.2 Type Conversions. The Riemannian metric over the manifold

defines a notion of distance and orthogonality. The magnitude |𝛼 | of
a 𝑘-form 𝛼 is the throughput of the codimension cloud across an

orthogonal cross section of unit 𝑘-area. The Hodge star converts

11
For 𝑛 = 2, 3, every 𝑘-form at each tangent space admits a distinguished (𝑛 − 𝑘 )-

subspace that represents the orientation of the plane field. For𝑛 > 3 and 1 < 𝑘 < 𝑛 − 1,

the codimension-𝑘 plane fields are generally no longer described by a distinguished

oriented subspace but a superposition of many.

a 𝑘-form to a (𝑛 − 𝑘)-form, ★ : Ω𝑘 (𝑀) → Ω𝑘+1 (𝑀), so that the

codimension cloud of★𝛼 is pointwise the orthogonal complement of

the codimension cloud of 𝛼 , and that they share the same magnitude

|★𝛼 | = |𝛼 |. The parity is chosen so that ★★ 𝛼 = (−1)𝑘 (𝑛−𝑘 )𝛼 for a

𝑘-form 𝛼 .

𝛼

★𝛼

𝛼♯
A 1-form can be converted into a vector,

and vice versa, by the sharp ♯ : Ω1 (𝑀) →
Γ(𝑇𝑀) and flat ♭ = ♯−1

: Γ(𝑇𝑀) → Ω1 (𝑀)
operators. For a 1-form 𝛼 ∈ Ω1 (𝑀), the vec-
tor field 𝛼♯ is pointwise an arrow whose

direction is orthogonal to the hyperplane of

𝛼 at the point, and whose magnitude is set as |𝛼♯ | = |𝛼 |. An (𝑛 − 1)-
form 𝛽 (typically representing a flux) can also be converted into a

vector by (★𝛽)♯ . Both 1-forms and (𝑛 − 1)-forms are often identified

as vector fields; 𝛼♯ is a vector field orthogonal to the hyperplane

field 𝛼 ∈ Ω1 (𝑀), and (★𝛽)♯ is a vector tangential to the line field
𝛽 ∈ Ω𝑛−1 (𝑀). See also Tables 1 and 2.

A.1.3 Exterior Derivatives are Boundary Operators. The exterior
derivative operator 𝑑 : Ω𝑘 (𝑀) → Ω𝑘+1 (𝑀) takes the boundary of

the codimensional geometric representation. For each 𝛼 ∈ Ω𝑘 (𝑀),
its exterior derivative 𝑑𝛼 ∈ Ω𝑘+1 (𝑀) has the (𝑛−𝑘 −1) dimensional

cloud elements given by the boundaries of the (𝑛 − 𝑘)-dimensional

cloud elements of 𝛼 . The Stokes Theorem

∫
𝑆
𝑑𝛼 =

∮
𝜕𝑆

𝛼 can be

interpreted as the invariant of intersection number when swapping

the boundary operation. A 𝑘-form 𝛼 ∈ Ω𝑘 (𝑀) is closed if 𝑑𝛼 = 0. For

a closed form, the boundaries of each instance of the codimensional

cloud cancel out with the neighboring boundaries. As a consequence,

the codimensional cloud of a closed form stitches together into

global pieces of (𝑛 − 𝑘)-dimensional surfaces foliating the space.

Non-closed 𝑘-form Closed 𝑘-form

𝛼
v

𝑖v𝛼

A.1.4 Interior Products are Extrusions.
The interior product 𝑖v𝛼 of a 𝑘-form 𝛼 ∈
Ω𝑘

with a vector field v ∈ Γ(𝑇𝑀) is a
(𝑘 − 1)-form whose codimension cloud is

given by the extrusion of the codimension

cloud of 𝛼 along v.

𝛼

𝛽

𝛼 ∧ 𝛽

A.1.5 Wedge Products are Intersections.
The wedge product 𝛼 ∧ 𝛽 of a 𝑘-form 𝛼 ∈
Ω𝑘 (𝑀) and an ℓ-form 𝛽 ∈ Ωℓ (𝑀) is a (𝑘+
ℓ)-formwhose codimension cloud is given

by the intersection of the codimension

clouds of 𝛼 and 𝛽 .

A.1.6 Lie Derivatives and Advections of the Codimension Cloud. A
time varying 𝑘-form 𝛼 ∈ Ω𝑘 (𝑀) is said to be advected by a velocity

field v ∈ Γ(𝑇𝑀) if its codimension cloud is passively transported and

deformed by the flow generated by v. The corresponding advection

equation is given by
𝜕𝛼
𝜕𝑡 +Lv 𝛼 = 0 where Lv 𝛼 ∈ Ω𝑘 (𝑀) is the Lie
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derivative of 𝛼 with respect to v. Using geometric pictures relating

advection and extrusion along a flow, one finds Lv 𝛼 = 𝑑𝑖v𝛼 + 𝑖v𝑑𝛼 :

= +

Changes during

advection

Boundary of

extrusion

Extrusion of

boundary

(61)

known as the Cartan formula. Note that the green and white shades

represent the orientations. For a general time-dependent 𝑘-form 𝛼 ,

the Lie material derivative 𝜕𝛼
𝜕𝑡 +Lv 𝛼 measures the rate of change

of 𝛼 following the flow.

A.1.7 Dirac 𝛿-Forms. A Dirac 𝛿-form, also known as an integral
current [Wang and Chern 2021; Palmer et al. 2022], is a differential

form whose codimension cloud is concentrated to a single geometry.

For a codimension-𝑘 surface Γ ⊂ 𝑀 , the associated Dirac-𝛿 form

𝛿Γ ∈ Ω𝑘 (𝑀) is a 𝑘-form such that

∫
𝑀
𝛽 ∧ 𝛿Γ =

∫
Γ 𝛽 for all 𝛽 ∈

Ω𝑛−𝑘 (𝑀). Equivalently,
∫
𝑆
𝛿Γ is the signed intersection between Γ

and any 𝑘-dimensional test surface 𝑆 . For codimension-𝑘 surface

Γ and codimension-ℓ surface Σ, we have 𝑑𝛿Γ = (−1)𝑘+1𝛿𝜕Γ and

𝛿Γ ∧ 𝛿Σ = 𝛿Γ∩Σ.

A.1.8 Dirichlet Data are Intersections with Boundary. Suppose the
domain 𝑀 has a boundary 𝜕𝑀 . Let 𝑗 : 𝜕𝑀 ↩→ 𝑀 denote the in-

clusion map. For each 𝑘-form 𝛼 ∈ Ω𝑘 (𝑀), we call the pullback

𝑗∗𝛼 ∈ Ω𝑘 (𝜕𝑀) of 𝛼 by 𝑗 the Dirichlet boundary data of 𝛼 . Geo-

metrically, the codimension-𝑘 cloud for 𝑗∗𝛼 , which is (𝑛 − 1 − 𝑘)-
dimensional elements within the (𝑛 − 1)-dimensional 𝜕𝑀 , is given

by the intersection of 𝜕𝑀 with the codimension cloud of 𝛼 .

A.1.9 Dirichlet and Co-Dirichlet Boundary Conditions. A 𝑘-form

𝛼 ∈ Ω𝑘 (𝑀) is said to beDirichlet if 𝑗∗𝛼 = 0. It is said to be co-Dirichlet
if 𝑗∗ ★ 𝛼 = 0. Under the Dirichlet boundary (resp. co-Dirichlet

boundary) condition, the codimensional geometry is tangential (resp.

normal) to the boundary. See Tables 1 and 2 for these boundary

conditions in terms of the scalar and vector notations.

A.1.10 𝐿2 Inner Products and Codifferentials. The 𝐿2
inner prod-

uct between two 𝑘-forms 𝛼, 𝛽 ∈ Ω𝑘 (𝑀) is denoted and given by

⎷𝛼, 𝛽⌄ =
∫
𝑀
𝛼 ∧★𝛽 . The codifferential 𝛿𝛼 ∈ Ω𝑘−1 (𝑀) of a 𝑘-form

𝛼 is defined by 𝛿𝛼 = (−1)𝑘 ★−1 𝑑 ★ 𝛼 . Up to a boundary term, the

codifferential 𝛿 : Ω𝑘+1 (𝑀) → Ω𝑘 (𝑀) is the adjoint of 𝑑 with respect

to the 𝐿2
inner product using Green’s Identity

⎷𝑑𝛾, 𝜎⌄ = ⎷𝛾, 𝛿𝜎⌄ +
∮
𝜕𝑀
( 𝑗∗𝛾) ∧ ( 𝑗∗ ★ 𝜎) (62)

which holds for all 𝛾 ∈ Ω𝑘 (𝑀) and 𝜎 ∈ Ω𝑘+1 (𝑀).

A.2 Homology Theory
We review the definitions and the notations in the (singular) homol-

ogy theory. Let𝑀 be a smooth manifold with boundary 𝑗 : 𝜕𝑀 ↩→ 𝑀 .

A 𝑘-chain is a formal linear combination of 𝑘-dimensional primitive

geometries in𝑀 . Concretely, each primitive 𝑘-dimensional geometry

is a smooth map that places a 𝑘-dimensional simplex into𝑀 . The

notion of boundary of a 𝑘-chain is inherited from the notion of

boundary of a simplex.

A.2.1 Absolute Homology. The linear space of 𝑘-chains in𝑀 is de-

noted by𝐶𝑘 (𝑀). The boundary operator is a linearmap 𝜕𝑘 : 𝐶𝑘 (𝑀) →
𝐶𝑘−1

(𝑀) given by its definition for each primitive geometry. The

boundary operators satisfy 𝜕𝑘−1
◦ 𝜕𝑘 = 0. A 𝑘-chain Γ ∈ 𝐶𝑘 (𝑀)

is said to be closed, or a cycle, if 𝜕𝑘Γ = 0. A 𝑘-chain Γ ∈ 𝐶𝑘 (𝑀) is
called exact, or a boundary, if Γ = 𝜕𝑘+1Σ for some (𝑘 + 1)-chain
Σ ∈ 𝐶𝑘+1 (𝑀). The subspace of 𝑘-cycles and 𝑘-boundaries are re-

spectively denoted by

𝑍𝑘 (𝑀) B ker(𝜕𝑘 ) ⊂ 𝐶𝑘 (𝑀), (63)

𝐵𝑘 (𝑀) B im(𝜕𝑘+1) ⊂ 𝑍𝑘 (𝑀) ⊂ 𝐶𝑘 (𝑀) . (64)

Two cycles Γ1, Γ2 ∈ 𝑍𝑘 (𝑀) are said to be homologous if Γ1 − Γ2 ∈
𝐵𝑘 (𝑀); that is, Γ1, Γ2 coborder a (𝑘 + 1)-chain. The 𝑘-th homology
is the collection of “types” (equivalence classes) of cycles after

identifying homologous cycles. Algebraically, the 𝑘-th homology is

defined by the quotient space

𝐻𝑘 (𝑀) B 𝑍𝑘 (𝑀)/𝐵𝑘 (𝑀). (65)

A.2.2 Relative Homology. The general idea of homology theory

relative to 𝜕𝑀 is to allow cycles to have boundaries attached to 𝜕𝑀 .

The algebraic trick for regarding these geometries as cycles is to

“ignore 𝜕𝑀 .”

Define the space of relative 𝑘-chains by

𝐶𝑘 (𝑀, 𝜕𝑀) B 𝐶𝑘 (𝑀)/𝐶𝑘 (𝜕𝑀) . (66)

That is, two 𝑘-chains represent the same object in𝐶𝑘 (𝑀, 𝜕𝑀) if they
differ only on 𝜕𝑀 . One may verify that the boundary operator 𝜕𝑘
is well-defined on 𝐶𝑘 (𝑀, 𝜕𝑀). Hence we have 𝜕𝑘 : 𝐶𝑘 (𝑀, 𝜕𝑀) →
𝐶𝑘−1

(𝑀, 𝜕𝑀) satisfying the same structural equation 𝜕𝑘−1
◦ 𝜕𝑘 = 0.

Analogous to the absolute homology theory, one defines the spaces

of relative cycles and relative boundaries respectively by

𝑍𝑘 (𝑀, 𝜕𝑀) B ker(𝜕𝑘 ) ⊂ 𝐶𝑘 (𝑀, 𝜕𝑀) (67)

𝐵𝑘 (𝑀, 𝜕𝑀) B im(𝜕𝑘+1) ⊂ 𝑍𝑘 (𝑀, 𝜕𝑀) ⊂ 𝐶𝑘 (𝑀, 𝜕𝑀). (68)

A representative of a relative cycle may have a boundary that is

contained in 𝜕𝑀 . Two relative cycles Γ1, Γ2 are homologous if Γ1 − Γ2

is the boundary of some Σ modulo 𝜕𝑀 . The 𝑘-th relative homology

𝐻𝑘 (𝑀, 𝜕𝑀) B 𝑍𝑘 (𝑀, 𝜕𝑀)/𝐵𝑘 (𝑀, 𝜕𝑀) (69)

is the collection of types of relative cycles after the identification of

homologous cycles.

B POISSON PROBLEM FOR STREAM FORM
In this appendix, we describe the system of equations one needs to

solve for constructing 𝑑+𝜔 ∈ Ω𝑘 (𝑀) for a (𝑘 +1)-form𝜔 ∈ im(𝑑) ⊂
Ω𝑘+1 (𝑀).
By Proposition 4, we know that 𝑑+𝜔 takes the form of

𝑑+𝜔 = 𝛿𝜓 for some𝜓 ∈ Ω𝑘+1 (𝑀), 𝑗∗ ★𝜓 = 0. (70)

This stream form𝜓 is not unique by additive factors of ker(𝛿).
Definition 6 (Coulomb gauge). The particular solution𝜓 to (70) is
said to satisfy the Coulomb gauge if 𝑑𝜓 = 0 and𝜓 ⊥ H𝑘+1

C
(𝑀).
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Proposition 10. The Coulomb gauge solution𝜓 to (70) is the unique
solution to the boundary-value Poisson problem

(𝑑𝛿 + 𝛿𝑑)𝜓 = 𝜔 in𝑀 , (71a)

𝑗∗ ★𝜓 = 0 on 𝜕𝑀 , (71b)

𝑗∗ ★𝑑𝜓 = 0 on 𝜕𝑀 , (71c)

𝜓 ⊥ H𝑘+1
C
(𝑀) . (71d)

Proof. By the invertibility of 𝑑,𝑑+ between im(𝑑) and im(𝑑+)
(Proposition 3), (70) is equivalent to

𝑑𝛿𝜓 = 𝜔, 𝑗∗ ★𝜓 = 0. (72)

The addition of the Coulomb gauge conditions (especially 𝑑𝜓 = 0)

ensures (71a) and (71c). Conversely, suppose𝜓 solves (71).
12

We only

need to show 𝑑𝜓 = 0; if so, then (72) and the rest of the Coulomb

conditions follow. To show 𝑑𝜓 = 0, apply 𝑑 on both sides of (71a)

to obtain 𝑑𝛿𝑑𝜓 = 0. This equation implies ∥𝛿𝑑𝜓 ∥2 = ⎷𝛿𝑑𝜓, 𝛿𝑑𝜓⌄ =
⎷𝑑𝛿𝑑𝜓,𝑑𝜓⌄ = 0 by (62) and (71c). Therefore, 𝛿𝑑𝜓 = 0. This once

again implies ⎷𝑑𝜓,𝑑𝜓⌄ = ⎷𝜓, 𝛿𝑑𝜓⌄ = 0 using (62) and (71b). Hence

𝑑𝜓 = 0, which completes the proof. □

Remark 7. The condition (71d) in the Coulomb gauge ensures the
uniqueness of (71). In practice, the condition (71d) is sometimes neither
mentioned nor enforced. This is fine, as the remaining system of (71)

only has a small finite dimensional kernel ofH𝑘+1
𝐶
(𝑀), which does

not jeopardize most linear solvers and does not influence the result of
𝛿𝜓 in (70).

B.1 Solving Streamfunctions in 2D
In 2D, the stream form𝜓 ∈ Ω2 (𝑀) is a top-degree form, and therefore

(71c) drops. With the both the vorticity 2-form 𝜔 and the stream

form𝜓 written as their scalar counterparts𝑤, ˆ𝜓 (𝜔 = ★𝑤 ,𝜓 = ★ ˆ𝜓 ),

Eq. (71) becomes a Dirichlet value problem:
−Δ ˆ𝜓 = 𝑤, (73a)

ˆ𝜓 |𝜕𝑀 = 0, (73b)

ˆ𝜓 ⊥ H0

D
(𝑀), (73c)

where −Δ = 𝛿𝑑 is the scalar Laplacian. On a connected domain𝑀

without boundary, we have H0

D
(𝑀) = {constant functions} � R.

In that case, (73b) drops, and (73c) reads as a zero-mean condition∫
𝑀

ˆ𝜓 𝑑𝐴 = 0. If 𝑀 has boundary, then H0

D
(𝑀) = {0}, and the

condition (73c) drops.

On a triangle mesh, we set both𝑤 and
ˆ𝜓 on vertices following

[Azencot et al. 2014]. Another possible approach is to let the values

of𝑤 and
ˆ𝜓 sit on edge centers, and represent

ˆ𝜓 using the Crouzeix–

Raviart elements [Poelke and Polthier 2016].

B.2 Solving Streamfunctions on a 3D MAC Grid
Here, we describe an implementation of (71) in 3D under the Marker-

And-Cell (MAC) discretization scheme [Harlow and Welch 1965;

Bridson 2015]. The streamfunction solve is a simplified special case

of [Ando et al. 2015a] without a varying density. In the MAC scheme,

the velocity field is given as fluxes assigned to the faces on a regular

grid. The vorticity and the streamfunction are defined on edges. That

12
The existence and the uniqueness for the solution to (71) is given by [Schwarz 2006,

Corollary 3.4.8].

is, the MAC scheme is equivalent to a Discrete Exterior Calculus

(DEC) scheme for our exterior calculus formulation up to a Hodge

dual. For notation distinction, let 𝜂 = ★𝜂 ∈ Ω2 (𝑀) be the velocity
flux defined on faces, �̂� = ★𝜔 ∈ Ω1 (𝑀) be the vorticity 1-form

defined on edges, and
ˆ𝜓 = ★𝜓 be the stream 1-form on edges.

Let the grid (V, E, F,C) be organized by the vertex set V, edge
set E, face set F and cell set C. We assume every edge has length

ℎ. The adjacency and orientation between the cubical complex

are summarized in the discrete exterior derivative matrices (a.k.a.

coboundary operators) forming a (co)chain complex

R |V |
d0−−→ R |E | d1−−→ R |F | d2−−→ R |C | , d1d0 = 0, d2d1 = 0. (74)

Note that each matrix d𝑘 has entries either −1, 0, 1. The division by

ℎ in a finite difference derivative will be denoted separately, keeping

d𝑘 ’s purely topological.

To assign obstacles, for each cell in C, label “fluid (interior 𝐼 )” or

“solid (boundary 𝐵).” Next, label fluid and solid on V, E, F by taking the
closure of the solid cells. That is, first initialize each element of V, E, F
as fluid, and then label every boundary face of a solid cell a “solid”

face; subsequently, label every boundary edge of every solid face as

solid, and finally label every boundary vertex of every boundary

edge as solid. After consistently labeling of fluid (𝐼 ) and solid (𝐵)

elements V = V𝐼 ⊔ V𝐵 , E = E𝐼 ⊔ E𝐵 , F = F𝐼 ⊔ F𝐵 , C = C𝐼 ⊔ C𝐵 , slice

the coboundary operators into

d1 =


|E𝐼 | |E𝐵 |

|F𝐵 | 0 d1,𝐵𝐵

|F𝐼 | d1,𝐼 𝐼 d1,𝐼𝐵

 : R |E𝐼 | ⊕ R |E𝐵 | → R |F𝐼 | ⊕ R |F𝐵 | (75)

and similarly for the other d𝑘 ’s. One checks that the interior (fluid)
blocks form a cochain complex:

R |V𝐼 | d0,𝐼 𝐼−−−→ R |E𝐼 |
d1,𝐼 𝐼−−−→ R |F𝐼 |

d2,𝐼 𝐼−−−→ R |C𝐼 | , d𝑘+1,𝐼 𝐼d𝑘,𝐼 𝐼 = 0, (76)

which is known as the relative cochain complex.

Now, the no-through boundary condition 𝑗∗𝜂 = 0 and the Dirichlet

condition 𝑗∗ ˆ𝜓 = 0 translates to the fact that 𝜂 and
ˆ𝜓 only live on F𝐼

and E𝐼 respectively, and vanish over F𝐵, E𝐵 . The discrete relation
between the streamfunction

ˆ𝜓 ∈ R |E𝐼 | and 𝜂 ∈ R |F𝐼 | is given by

𝜂 = 1

ℎ
d1,𝐼 𝐼

ˆ𝜓 . (77)

Take “curl”
1

ℎ
d⊺

1,𝐼 𝐼
on both sides of the equation:

�̂�𝐼 =
1

ℎ
d⊺

1,𝐼 𝐼
𝜂 = 1

ℎ2
d⊺

1,𝐼 𝐼
d1,𝐼 𝐼

ˆ𝜓 . (78)

We label �̂�𝐼 ∈ R |E𝐼 | with subscript 𝐼 to acknowledge that �̂�𝐵 =
1

ℎ
d⊺

1,𝐼𝐵
𝜂 does not need to be zero. However, we will see �̂�𝐵 ∈ R |E𝐵 |

do not play a role in determining
ˆ𝜓 ∈ R |E𝐼 | .

Given interior vorticity data �̂�𝐼 ∈ R |E𝐼 | , we solve a particular
solution

ˆ𝜓 to (78) by the linear system

1

ℎ2

(
d⊺

1,𝐼 𝐼
d1,𝐼 𝐼 + d0,𝐼 𝐼d

⊺
0,𝐼 𝐼

)
︸                           ︷︷                           ︸

CL

ˆ𝜓 = �̂�𝐼 . (79)

Proposition 11. Any solution ˆ𝜓 ∈ R |E𝐼 | to (79) satisfies (78) and a
Coulomb gauge condition d⊺

0,𝐼 𝐼
ˆ𝜓 = 0.
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Proof. It suffices to show that any solution to (79) satisfies

d⊺
0,𝐼 𝐼

ˆ𝜓 = 0. Apply d⊺
0,𝐼 𝐼

on (79) to obtain d⊺
0,𝐼 𝐼

d0,𝐼 𝐼d
⊺
0,𝐼 𝐼

ˆ𝜓 = 0 using

�̂�𝐼 ∈ im(d⊺
1,𝐼 𝐼
) and (76). This equation ensures that |d0,𝐼 𝐼d

⊺
0,𝐼 𝐼

ˆ𝜓 |2 =

ˆ𝜓⊺d⊺
0,𝐼 𝐼

d0,𝐼 𝐼d
⊺
0,𝐼 𝐼

ˆ𝜓 = 0. Therefore, d0,𝐼 𝐼d
⊺
0,𝐼 𝐼

ˆ𝜓 = 0. Hence, |d⊺
0,𝐼 𝐼

ˆ𝜓 |2 =

𝜓⊺d0,𝐼 𝐼d
⊺
0,𝐼 𝐼

ˆ𝜓 = 0, and thus d⊺
0,𝐼 𝐼

ˆ𝜓 = 0. □

C LINKING NUMBER IN GENERAL DOMAIN
Here we provide a well-defined linking number (Theorem 2) between

two fields on a general manifold𝑀 . This linking number between

smooth fields is also called the cross-helicity. For general domain,

define the linking Link(𝜔) (𝜉) between a closed 𝑘-form 𝜔 and a

closed Dirichlet (𝑛 − 𝑘 + 1)-form 𝜉 by its variation with respect to

local transportations �̊� = L𝑌 𝜔 while fixing 𝜉 :

𝛿Link(𝜔 ) (𝜉 )
𝛿𝜔

⟦L𝑌 𝜔⟧ B
∫
𝑀
(𝑖𝑌𝜔) ∧ 𝜉 . (80)

Now, we verify this variational gradient is indeed a gradient by

checking that the second derivatives commute. Take two vector

fields 𝑌1, 𝑌2 with Lie commutivity [𝑌1, 𝑌2] = 0 (i.e. two coordinate

directions on the diffeomorphism group Diff (𝑀)). The mixed second

derivative is

𝛿
𝛿𝜔

(
𝛿Link(𝜔 ) (𝜉 )

𝛿𝜔
⟦L𝑌1

𝜔⟧
)
⟦L𝑌2

𝜔⟧ (81)

=
∫
𝑀
(𝑖𝑌1

L𝑌2
𝜔) ∧ 𝜉 =

∫
𝑀
(L𝑌2

𝑖𝑌1
𝜔 − 𝑖 [𝑌2,𝑌1 ]𝜔) ∧ 𝜉 (82)

=
∫
𝑀
(𝑖𝑌2

𝑑𝑖𝑌1
𝜔 + 𝑑𝑖𝑌2

𝑖𝑌1
𝜔) ∧ 𝜉 =

∫
𝑀
(𝑖𝑌2

L𝑌1
𝜔) ∧ 𝜉 (83)

= 𝛿
𝛿𝜔

(
𝛿Link(𝜔 ) (𝜉 )

𝛿𝜔
⟦L𝑌2

𝜔⟧
)
⟦L𝑌1

𝜔⟧ (84)

where we have used 𝑑𝜔 = 0 and the Dirichlet closedness of 𝜉

for

∫
𝑀
𝑑 (·) ∧ 𝜉 = 0 in the second to last equality. Therefore, for

each fixed 𝜉 , Link(𝜔) (𝜉) is well-defined locally in the space of 𝜔 ’s

Lie-transported by diffeomorphisms.

D ANALYTICAL EXAMPLE

p𝑗

p𝑗
𝐷𝑅

O p𝑖

p𝑖

pWe demonstrate an analytical example

of Corollary 2 by considering point vor-

tices with strengths 𝜅1, . . . , 𝜅𝑁 located at

p1, . . . , p𝑁 in the plane exterior to a cir-

cular obstacle 𝐷𝑅 of radius 𝑅 centered at

the origin. Note that p𝑖 ’s move over time

while 𝜅𝑖 ’s remain constant. Using the method of images, the vortex

dynamics can be represented without the obstacle by introducing

mirrored vortices reflected in the disk. These mirrored vortices have

strengths 𝜅𝑖 = −𝜅𝑖 and positions p𝑖 = 𝑅2

|p𝑖 |2 p𝑖 . The domain R2 \ 𝐷𝑅

admits a harmonic vector field given by the clockwise 90
◦
rotated

gradient of𝑈 (x) = 1

2𝜋 log |x|. The corresponding vortex–harmonic

streamline linking number is

Link =
∑𝑁
𝑖=1

𝜅𝑖𝑈 (p𝑖 ) =
∑𝑁
𝑖=1

𝜅𝑖
2𝜋 log |p𝑖 |. (85)

The flux over any cross-section extending from the obstacle boundary

to infinity can be computed by the difference of the streamfunction at

the endpoints of the cross-section. In this case, the flux is the negative

streamfunction value −𝜓 (p) = −∑𝑁
𝑖=1
(𝜅𝑖𝐺 (p, p𝑖 ) + 𝜅𝑖𝐺 (p, p𝑖 )) at

any p ∈ 𝜕𝐷𝑅 , where 𝐺 (x, y) = − 1

2𝜋 log |x − y| is the R2
-Green’s

function. Using the geometric identity that the ratio |p−p𝑖 |/|p−p𝑖 | is

the constant |p𝑖 |/𝑅, we obtain

Flux = −𝜓 (p) = ∑𝑁
𝑖=1

( 𝜅𝑖
2𝜋 log |p − p𝑖 | − 𝜅𝑖

2𝜋 log |p − p𝑖 |
)

(86)

=
∑𝑁
𝑖=1

𝜅𝑖
2𝜋 log

|p−p𝑖 |
|p−p𝑖 | =

∑𝑁
𝑖=1

𝜅𝑖
2𝜋 log

|p𝑖 |
𝑅

. (87)

In particular, we find that

Flux − Link = − log𝑅

(∑𝑁
𝑖=1

𝜅𝑖

)
, (88)

which is indeed constant over time.

E PROOFS

E.1 Proof of Proposition 1
To prove im(𝑑)⊥ = V𝑘

, we show that ⎷𝑑𝛼, 𝛽⌄ = 0 for all 𝛼 ∈
Ω𝑘−1 (𝑀) if and only if 𝛽 ∈ V𝑘

. By Green’s identity (62), the con-

dition ⎷𝑑𝛼, 𝛽⌄ = 0 for all 𝛼 is equivalent to ⎷𝛼, 𝛿𝛽⌄ +
∮
𝜕𝑀
( 𝑗∗𝛼) ∧

( 𝑗∗ ★ 𝛽) = 0 for arbitrary 𝛼 . The latter condition holds if and only if

both 𝛿𝛽 and 𝑗∗ ★ 𝛽 vanish, i.e. 𝛽 ∈ V𝑘
. □

E.2 Proof of Proposition 2
We first demonstrate (8b). Since 𝑑+ (7) always first operates the
orthogonal projection (6) onto im(𝑑), we have ker(𝑑+) ⊃ im(𝑑)⊥.
To show the final result of ker(𝑑+) = im(𝑑)⊥, it suffices to check

ker(𝑑+) ∩ im(𝑑) = {0}. Suppose 𝛽 ∈ ker(𝑑+) ∩ im(𝑑). The condition
𝛽 ∈ im(𝑑) asserts that the preimage 𝑑−1 ({𝛽}) is non-empty. The

condition 𝛽 ∈ ker(𝑑+) says that 0 ∈ 𝑑−1 ({𝛽}). In particular we must

have 𝛽 = 𝑑0 = 0. This completes the proof for (8b).

Next we show (8a). Eq. (7) implies that each element in im(𝑑+) is
an orthogonal projection of the origin onto an affine subspace (preim-

age 𝑑−1 ({𝑃
im(𝑑 )𝛽})) that is parallel to ker(𝑑). Therefore im(𝑑+) ⊂

ker(𝑑)⊥. On the other hand, every element 𝛼0 ∈ ker(𝑑)⊥ is the mini-

mizer of min𝑑𝛼=𝑑𝛼0

1

2
∥𝛼 ∥2 ≡ min𝛼−𝛼0∈ker(𝑑 )

1

2
(∥𝛼0∥2 + ∥𝛼 −𝛼0∥2).

That is, 𝛼0 = 𝑑+ (𝑑𝛼0), and hence 𝛼0 ∈ im(𝑑+). Therefore im(𝑑+) =
ker(𝑑)⊥. This completes the proof for (8a).

The splittings (8) imply that 𝑑, 𝑑+ are isomorphisms between the

subspaces im(𝑑+) and im(𝑑). Moreover, when being restricted to

im(𝑑+), im(𝑑), they are the inverse of each other by construction.

These properties imply (9) and Proposition 3. □

E.3 Proof of Proposition 3
See Appendix E.2. □

E.4 Proof of Proposition 4
To characterize the general form of elements in im(𝑑+), we study
𝛼0 = 𝑑+𝛽 for a general 𝛽 ∈ Ω𝑘+1 (𝑀). By Proposition 3 we may

assume 𝛽 ∈ im(𝑑) (𝑃
im(𝑑 )𝛽 = 𝛽) without loss of generality. By

(7), 𝛼0 is the solution for the problem of searching for an 𝛼 that

minimizes ∥𝛼 ∥2/2 subject to 𝑑𝛼 = 𝛽 . Taking a variation 𝛼0 + 𝜖𝛼 of

the constrained optimization at the optimizer 𝛼 = 𝛼0 yields

⎷𝛼0, 𝛼⌄ − ⎷𝑑𝛼,𝜓⌄ = 0 for all 𝛼 ∈ Ω𝑘 (𝑀) (89)

for some Lagrange multiplier 𝜓 ∈ Ω𝑘+1 (𝑀). By Green’s identity

(62), eq. (89) becomes

⎷𝛼0 − 𝛿𝜓, 𝛼⌄ −
∮
𝑀
( 𝑗∗𝛼) ∧ ( 𝑗∗ ★𝜓 ) = 0 for all 𝛼 ∈ Ω𝑘 (𝑀), (90)
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which implies that both 𝛼0 − 𝛿𝜓 = 0 and 𝑗∗ ★𝜓 = 0. In conclusion,

each element 𝛼0 = 𝑑+𝛽 ∈ im(𝑑+) takes the form of 𝛼0 = 𝛿𝜓 for

some𝜓 that satisfies the co-Dirichlet boundary condition. □

E.5 Proof of Proposition 5
To show the coexactness of 𝜂, or equivalently the exactness of

𝜂 B ★𝜂, it suffices to check that

∮
𝐶
𝜂 = 0 for all closed curve𝐶 ⊂ 𝑀 .

If 𝑀 is the complement of a few obstacles in a simply-connected

domain, then every 𝐶 is homologous to a boundary curve along

which

∮
𝐶
𝜂 = 0 using the no-through condition 𝑗∗ ★𝜂. □

E.6 Proof of Proposition 6
Here, we check that for each fixed 𝜂 ∈ V1

the linear functional

Flux(𝜂) (·) : 𝑍𝑛−1 (𝑀, 𝜕𝑀) → R, 𝑆 ↦→
∫
𝑆
★𝜂 as defined in (16), is

well-defined over 𝐻𝑛−1 (𝑀, 𝜕𝑀). Let 𝑆1, 𝑆2 ∈ 𝑍𝑛−1 (𝑀, 𝜕𝑀) be ho-
mologous relative cycles. That is, when 𝑆1, 𝑆2 are treated as absolute

(𝑛 − 1)-chains, we have 𝑆2 = 𝑆1 + 𝜕𝑈 + Σ for some 𝑈 ∈ 𝐶𝑛 (𝑀)
and Σ ∈ 𝐶𝑛−1 (𝜕𝑀). Our goal is to show

∫
𝑆1

★𝜂 =
∫
𝑆2

★𝜂. Using the

conditions 𝑑 ★ 𝜂 = 0 and 𝑗∗ ★ 𝜂 = 0 given by 𝜂 ∈ V1
, and that Σ

completely lies in 𝜕𝑀 , we find

∫
𝑆2

★𝜂 =
∫
𝑆1

★𝜂 +
∫
𝜕𝑈

★𝜂 +
∫
Σ★𝜂 =∫

𝑆1

★𝜂 +
∫
𝑈
𝑑 ★𝜂 +

∫
Σ 𝑗∗ ★𝜂 =

∫
𝑆1

★𝜂. □

E.7 Proof of Proposition 7
Here, we show that ker(Flux) = im(𝑑+). For notation convenience,

we write 𝜂 = ★𝜂 for each 𝜂 ∈ V1
to absorb the Hodge star. Let us

also call Ω𝑘
D
(𝑀) = {𝛼 ∈ Ω𝑘 (𝑀) | 𝑗∗𝛼 = 0} the space of Dirichlet-

condition-satisfying 𝑘-forms. Note that the Dirichlet de Rham com-

plex · · · 𝑑−→ Ω𝑘
D
(𝑀) 𝑑−→ Ω𝑘+1

D
(𝑀) 𝑑−→ · · · is the cochain complex

that is dual to the relative chain complex 𝐶• (𝑀, 𝜕𝑀) through the

standard de Rham pairing (𝐴, 𝛼) ↦→
∫
𝐴
𝛼 .

Now, each 𝜂 = ★𝜂, 𝜂 ∈ V1
, is a general member 𝜂 ∈ Ω𝑛−1

D
(𝑀)

satisfying 𝑑𝜂 = 0. Our goal is to show that

∫
𝑆
𝜂 for all relative cycles

𝑆 ∈ 𝑍𝑛−1 (𝑀, 𝜕𝑀) if and only if 𝜂 = 𝑑 ˆ𝜓 for some
ˆ𝜓 ∈ Ω𝑛−2

D
(𝑀) (cf.

Proposition 4).

One of the directions (“⇐”) in the equivalence statement only re-

quires elementary calculus. Suppose 𝜂 = 𝑑 ˆ𝜓 for some
ˆ𝜓 ∈ Ω𝑛−2 (𝑀),

𝑗∗ ˆ𝜓 = 0. We claim

∫
𝑆
𝜂 = 0 for all 𝑆 ∈ 𝑍𝑛−1 (𝑀, 𝜕𝑀). Note that

these surfaces 𝑆 has the property that 𝜕𝑆 is either empty or 𝜕𝑆 lies

completely in 𝜕𝑀 . Thus

∫
𝑆
𝜂 =

∫
𝑆
𝑑 ˆ𝜓 =

∫
𝜕𝑆

ˆ𝜓 =
∫
𝜕𝑆

𝑗∗ ˆ𝜓 = 0.

Now let us show the other direction (“⇒”) using linear algebraic

techniques. The statement we want to show is that if 𝜂 ∈ Ω𝑛−1

D
(𝑀)

satyisfies

∫
𝑆
𝜂 = 0 for all cycles 𝑆 ∈ 𝑍𝑛−1 (𝑀, 𝜕𝑀), then 𝜂 is exact in

the Dirichlet de Rham complex. To see this, inspect the following

diagram in which 𝜕 and 𝑑 are adjoint of each other

𝐶𝑛−1 (𝑀, 𝜕𝑀) 𝜕 //
OO

dual space

��

𝐶𝑛−2 (𝑀, 𝜕𝑀)OO

dual space

��
𝜂∈ Ω𝑛−1

D
(𝑀) Ω𝑛−2

D
(𝑀).𝑑oo

(91)

By the Theorem of Four Fundamental Subspaces in linear alge-

bra, we have that im(𝑑) ⊂ Ω𝑛−1

D
equals to the annihilator of

ker(𝜕) ⊂ 𝐶𝑛−1 (𝑀, 𝜕𝑀). The condition
∫
𝑆
𝜂 = 0 for all 𝑆 ∈ ker(𝜕)

in 𝐶𝑛−1 (𝑀, 𝜕𝑀) ensures that 𝜂 is in the annihilator of ker(𝜕), and
therefore 𝜂 is exact. □

E.8 Proof of Proposition 8
To show that the Flux : V1 (𝑀) → 𝐻𝑛−1 (𝑀, 𝜕𝑀)∗ is surjective, it
suffices to take a generator basis (𝑆1, . . . , 𝑆𝑚) for 𝐻𝑛−1 (𝑀, 𝜕𝑀) and
for each 𝑗 = 1, . . . ,𝑚 construct a harmonic field 𝜁 𝑗 ∈ H1

C
(𝑀) such

that

∫
𝑆𝑖
𝜁 𝑗 = 𝛿

𝑗
𝑖
. This construction is described in Section 3.4.1 and

verified by Proposition 9. □

E.9 Proof of Proposition 9

Our first goal is to show

∫
𝑀
𝜁 𝑖∧𝜉 𝑗 = 𝛿𝑖

𝑗
. Let us call

ˆ𝜉 𝑗 B ★−1𝜉 𝑗 = (1−
𝑑𝑑+)𝛿𝑆 𝑗

∈ H1

C
(𝑀). Note that

∫
𝑀
𝑑+ (·)∧★ ˆ𝜉 𝑗 = 0 by the orthogonality

between im(𝑑+) and co-Dirichlet harmonic 1-forms. Now,∫
𝑀
𝜁 𝑖 ∧ 𝜉 𝑗 =

∫
𝑀
𝜁 𝑖 ∧★ ˆ𝜉 𝑗 =

∫
𝑀
(1 − 𝑑+𝑑) (★𝛿𝐶𝑖

) ∧★ ˆ𝜉 𝑗

=
∫
𝑀
(★𝛿𝐶𝑖

) ∧★ ˆ𝜉 𝑗 . (92)

By substituting
ˆ𝜉 𝑗 = (1 − 𝑑𝑑+)𝛿𝑆 𝑗

and Appendix A.1.7, we obtain∫
𝑀
𝜁 𝑖 ∧ 𝜉 𝑗 =

∫
𝑀
(★𝛿𝐶𝑖

) ∧★ ˆ𝜉 𝑗 (93)

=
∫
𝑀
(★𝛿𝐶𝑖

) ∧★
(
(1 − 𝑑𝑑+)𝛿𝑆 𝑗

)
(94)

=
∫
𝑀
𝛿𝐶𝑖
∧ (1 − 𝑑𝑑+𝛿𝑆 𝑗

) (95)

=
∫
𝑀
𝛿𝐶𝑖
∧ 𝛿𝑆 𝑗︸     ︷︷     ︸

=𝛿𝐶𝑖∩𝑆𝑗

+(−1)𝑛 ︸       ︷︷       ︸
=0 since 𝜕𝐶𝑖 = 0

∫
𝐶𝑖

𝑑𝑑+𝛿𝑆 𝑗
(96)

= [𝐶𝑖 ∩ 𝑆 𝑗 ] = 𝛿𝑖 𝑗 . (97)

This dual basis property

∫
𝑀
𝜁 𝑖 ∧ 𝜉 𝑗 = 𝛿𝑖

𝑗
also ensures that the

coefficients 𝑐 𝑗 in (28) are given by 𝑐 𝑗 =
∫
𝑀
𝜂 ∧ 𝜉 𝑗 . What is left to

show is that

∫
𝑀
𝜂 ∧ 𝜉 𝑗 = Flux(𝜂) (𝑆 𝑗 ):∫

𝑀
𝜂 ∧ 𝜉 𝑗 =

∫
𝑀
𝜂 ∧★

(
(1 − 𝑑𝑑+)𝛿𝑆 𝑗

)
(98)

=
∫
𝑀
𝛿𝑆 𝑗
∧★𝜂 =

∫
𝑆 𝑗
★𝜂 = Flux(𝜂) (𝑆 𝑗 ), (99)

where we have used 𝜂⊥ im(𝑑) (Proposition 1). □
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